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SUMMARY 

Glaucoma is the second leading cause of blindness. However, the precise mechanisms 

leading to vision loss in this group of diseases remain unknown. Increased intraocular 

pressure (IOP) has been recognized as the most important risk factor, and lowering IOP is 

currently the only effective treatment for glaucoma. Unfortunately, pressure lowering 

usually only slows progression and does not cure the disease. Interestingly, the 

mechanical properties of the trabecular meshwork (TM) have been suggested to differ 

significantly between glaucomatous eyes versus unaffected eyes. This is important 

because the TM provides major resistance to the conventional outflow of aqueous humor 

and thus has a major influence on IOP. The objective of this work is to develop computer 

modeling and experimental tools to characterize TM stiffness in situ for human and 

mouse eyes, and to evaluate the role of mechanical properties of TM in influencing IOP 

across different conditions. 

We developed an inverse finite element method to estimate TM stiffness in dissected 

anterior wedges from 6 normal and 5 glaucomatous human eyes, in combination with 

optical coherence tomography (OCT) imaging. The results obtained from this method 

were also compared to direct measurements using atomic force microscopy (AFM). We 

showed that TM stiffness was higher, but only modestly so, in glaucomatous patients. 

Interestingly, outflow resistance in both normal and glaucomatous human eyes appeared 

to positively correlate with TM stiffness. We then went on to study TM in mice, first 

developing a cryosection-based AFM technique to localize and directly measure 

compressive Young’s modulus of TM. We found a significant correlation between TM 
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stiffness and outflow resistance in wild-type mice. Further, we found that local DEX 

treatment of eyes in live mice can induce higher IOP, and that a significant correlation 

between TM stiffness and outflow resistance also existed in DEX-treated mice. 

Together these findings suggest that TM stiffness is a surrogate marker for 

conventional outflow pathway function. This work motivates development of therapies to 

alter TM stiffness, or the factors underlying TM biomechanical property regulation, as 

potential novel alternative treatments for control of ocular hypertension in glaucoma. 
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 1 

CHAPTER 1. INTRODUCTION 

Part of this chapter (Sections 1.4-1.6) is based on a published journal paper. Citation: 

Wang K, Read AT, Sulchek T, et al. Trabecular meshwork stiffness in glaucoma. 

Experimental Eye Research 2017, Vol.158, 3-12. doi: 10.1016/j.exer.2016.07.011 

1.1 Anatomy of the Eye  

The mammalian eye is a slightly asymmetrical globe largely filled with a clear gel 

called the vitreous humor (Figure 1.1). Light passes through the pupil and lens to reach 

the back of the eye. The retina (containing specialized light-sensing cells) converts 

incoming light into action potentials that are carried by the optic nerve to the visual 

cortex to generate vision.  

The overall shape of the eye is maintained by its relatively stiff envelope, the so-called 

corneoscleral shell, and the intraocular pressure (IOP). The IOP is generated and 

maintained via the aqueous humor circulation system in the anterior part of the eye, 

which is divided into two chambers by the iris, namely the anterior and posterior 

chambers (Figure 1.2). The aqueous humor is a transparent fluid (98% water) that is 

secreted by the ciliary body into the posterior chamber at an approximately constant rate 

and then flows into the anterior chamber through the pupil. It then exits the eye through 

the so-called outflow pathway to return to the systemic circulation. There are two main 

outflow pathways, namely the conventional and unconventional outflow pathways 

(arrows in Figure 1.2).  
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In the conventional, or trabecular, outflow pathway, aqueous humor flows through a 

porous tissue called trabecular meshwork (TM), enters Schlemm’s canal (SC) and then 

drains into the episcleral veins. In the unconventional, or uveoscleral, outflow pathway, 

the aqueous humor enters the ciliary muscle and reaches the vortex veins or permeates 

across the sclera [1]. The majority of aqueous humor outflow occurs through the 

conventional pathway, which is the primary pathway relevant to IOP maintenance under 

normal circumstances [1]. The bulk of the flow resistance provided by this pathway is 

thought to be located at TM and SC endothelium [2-4], and thus these tissues have a 

major role in the control of IOP. As such, they are a major focus of research efforts in 

multiple labs around the world.  

 

Figure 1.1: Schematic diagrams of cross-sections of human (top) and mouse eyes 

(bottom). Reproduced from Veleri et al. 2015 [5]. 
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Figure 1.2: Schematic diagram of the aqueous humor circulation [6]. The aqueous 

humor is produced in the ciliary processes, flows into the anterior chamber through 

the pupil and exits the anterior chamber via either the trabecular or unconventional 

pathways. 

1.2 Mouse Eyes vs. Human Eyes 

Mice are important animal models for eye-related research, in part because their eyes 

share similarities with human eyes in both anatomy and function. For example, previous 

studies have shown that the conventional outflow pathway of mouse eyes resembles that 

of primate eyes in both their well-developed continuous SC and lamellated TM, and in 

their network of elastic fibers which tether the TM and SC inner wall to the ciliary 

muscle tendons [7]. In both humans and mice, the trabecular beams exhibit a central core 

of collagen oriented parallel with the long axis of the beam. A layer of basal lamina 



www.manaraa.com

 4 

material surrounds the core on all sides. Usually adjacent trabecular beams are separated 

by a space about the same width as the beams. The spaces get quite narrow in the region 

directly adjacent to SC.   

On the other hand, there are differences between mouse and human eyes, in addition 

to size. (1) The interior of the mouse eye is mostly occupied by the lens (Figure 1.1, 

bottom) and there is no macula lutea or lamina cribrosa in the mouse eye. (2) The number 

of trabecular beans are also different. In mice, there are 3-4 anterior and 7-10 posterior 

trabecular beams, which is about 1/3 – 1/2 the number in human eyes [8, 9]. (3) Further, 

in mice, iris processes can attach to the termination of Descemet’s membrane known as 

Schwalbe’s line, which is rarely seen in the human eye [8].  

Functionally, mouse eyes are similar to human eyes, in that they have no detectable 

washout while all other species studied to date show washout (time-dependent outflow 

facility increase with perfusion) [10]. Further, mouse eyes of the C57BL/6 strain respond 

to all conventional outflow active drugs tested to date (including sphingosine-1-

phosphate (S1P) and PG-EP4 receptor agonist) in a similar manner as for human eyes 

[11]. Specifically, S1P decreases outflow facility in mouse eyes by 39%  and PG-EP4  

causes a facility increase of 106% in mice, both of which are consistent with previous 

reports in human eyes [12, 13].  
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1.3 Glaucoma 

1.3.1 Pathophysiology 

Glaucoma is the second most common cause of blindness worldwide. It is 

characterized by damage to the optic nerve (composed primarily of retinal ganglion cell 

axons), which transmits visual information from the retina to the brain. Unfortunately, 

optic nerve damage in glaucoma causes irreversible vison loss. Elevated intraocular 

pressure (IOP) is one of the most important risk factors for glaucoma [14]. It is caused by 

an increased outflow resistance (or decreased outflow facility) to drainage of aqueous 

humor (AH) via the so-called conventional outflow pathway (Figure 1.2). As explained 

in greater detail in Section 1.3, this increased resistance is thought to be due to changes in 

the trabecular meshwork and/or inner wall of Schlemm’s canal which hinder the normal 

drainage of aqueous humor.  

1.3.2 Treatments for Glaucoma 

The goal of current treatments for glaucoma is to preserve vision by reducing IOP to a 

target value, using either medication or surgery. Common classes of medications used to 

lower IOP include prostaglandin analogues (to increase unconventional aqueous humor 

drainage), beta-adrenergic blockers (to reduce aqueous humor production), alpha-

adrenergic agonists (to reduce aqueous humor production, with a minor increase in 

outflow) and cholinergic agonists (to increase conventional aqueous humor outflow). 

However, these drugs can have both local and systemic adverse effects [15], such as 

ocular irritation and dry eye. Thus, some of these drugs are contraindicated, e.g. beta-
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adrenergic blockers are inappropriate for patients with diseases like chronic pulmonary 

obstruction or asthma. 

Surgically, laser trabeculoplasty is widely used to lower IOP by inducing biological 

changes in the trabecular meshwork (TM), resulting in increased aqueous outflow. 

Additionally, trabeculectomy is a commonly performed incisional surgical procedure that 

reduces IOP by excising a small portion of the TM or adjacent corneoscleral tissue to 

provide an alternate drainage route for aqueous humor. However, all of those treatments 

usually only slow progression and do not cure the disease. The pathobiology of elevated 

IOP in glaucoma is still poorly understood and the factors contributing to its progression 

have not been fully characterized. Thus, there is a pressing need for deeper knowledge of 

mechanisms that influence IOP in health and disease so as to develop new treatment 

strategies. 

1.4 The Trabecular Meshwork (TM) 

The TM can be divided into three parts according to tissue ultrastructure: the uveal 

meshwork, the corneoscleral meshwork and the juxtacanalicular connective tissue (JCT, 

also known as the cribriform meshwork; Figure 1.3). The uveal meshwork is the layer 

closest to the anterior chamber. It is formed by connective tissue extended from the iris 

and ciliary body. The intercellular spaces in this region are relatively large, so that it 

provides little resistance to the outflow of aqueous humor. The layer adjacent to the uveal 

meshwork is the corneoscleral meshwork. This layer is composed of lamellae and 

perforated plates covered by TM cells standing on a basement membrane [6]. The 

intercellular spaces in the corneoscleral meshwork are narrower than that in the uveal 
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meshwork, although still not thought to be small enough to contribute the major 

resistance to the aqueous humor outflow. The JCT, which has direct contact with the 

inner wall of endothelium of SC, is an amorphous layer consisting of cells interspersed 

amongst ECM. It has the smallest flow passageways in the TM, and thus it has been 

suggested to be the major site providing resistance to outflow within the TM [2, 16].  

The lamellae or beams and plates in the uveal and corneoscleral meshwork are 

covered by TM cells. TM cells are similar to endothelial cells in some ways, but also 

demonstrate additional phenotypical features, such as phagocytosis, migration and 

contractility [17]. The main components of ECM in the TM are collagens, elastin, 

proteoglycans and glycoproteins [18-21] and they provide the scaffold for TM cells to 

reside on and also interact with the cells. More specifically, the stroma of the beams in 

the uveal and corneoscleral meshwork exhibits typical collagen fibrils (type I and III), 

elastic fibers and microfibril sheath-derived (SD) material [18]. Additionally, the 

basement membrane proteins, type IV collagen and laminin, and basement membrane 

proteoglycans have been identified in the JCT region [22]. 
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Figure 1.3: Schematic diagram of the TM. The arrows indicate the direction of the 

aqueous humor flow, from the anterior chamber toward Schlemm’s canal (SC). The 

different regions of the TM are the uveal meshwork, the corneoscleral meshwork 

and the juxtacanalicular (or cribriform) meshwork. Resistance to aqueous humor 

flow increases progressively from the anterior chamber to SC as intercellular spaces 

narrow (reproduced from Textbook of Glaucoma. 3rd ed. Baltimore: Williams & 

Wilkins; 1992).  

The resistance provided by the TM is quantified by the outflow facility, which is the 

mathematical inverse of the outflow resistance. Outflow facility 𝑪,  is defined by the 

standard Goldmann’s equation: 

𝑪 =
𝑸−𝑸𝒖

𝑰𝑶𝑷−𝑬𝑽𝑷
                                                               (1) 

where 𝑸 is total aqueous humor outflow rate, 𝑸𝒖 is the unconventional outflow rate, and 

EVP is episcleral venous pressure. Goldmann’s equation simply states that outflow 

facility is the flow rate of aqueous humor through the trabecular meshwork divided by the 

pressure drop across this pathway.  
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In normal human eyes, the typical EVP is approximately 7-8 mmHg [23] and IOP 

ranges from 10-20 mmHg [24], which results in a pressure difference across the 

trabecular outflow pathway of around 8 mmHg. The aqueous humor is produced at an 

average rate of 2.75 µl/min [25] and normal outflow facility is around 0.23 µl/min/mmHg 

[26, 27]. The percentage of unconventional outflow of aqueous humor ranges from 0-

62% of total outflow depending on measurement approaches (direct or indirect) and age 

[28]. 

1.4.1 TM Stiffness 

There are several observations which suggest that TM stiffness may be important in 

ocular hypertension associated with glaucoma. For example, pharmacologic modulation 

of TM cell actomyosin tone has a significant effect on outflow facility [29]. Further, 

using direct measurements of TM biomechanical properties, Last et al. (2011) reported 

that the compressive stiffness of TM was 20 times greater in post mortem glaucomatous 

human eyes compared to ostensibly healthy eyes [30]. These findings have motivated us 

to study how TM stiffness and fluid flow resistance are interrelated. 

Stiffness is a measure of the tendency of a material to resist deformation when it is 

loaded, i.e. when a force is applied to it. There are many types of forces acting on tissue, 

including forces that pull or push perpendicular to the tissue surface (i.e. tensile forces or 

compressive forces) and shear forces which are parallel to the surface. Those forces can 

apply stress (unit: Pascals) on the tissue, defined as the force (unit: Newtons, N) 

normalized by the area over which it acts. Tissue stiffness can be formally quantified 

through the elastic modulus, which is the magnitude of a stress divided by the strain 
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(deformation) induced by the stress. More specifically, Young’s elastic modulus 

describes the resistance to compressive or tension forces while shear elastic modulus 

describes the resistance to shear forces. 

In the simplest case, strain (𝝐, quantifying the extent of tissue deformation) is defined 

by  

𝝐 =
𝒕𝒊𝒔𝒔𝒖𝒆 𝒅𝒆𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏

𝒕𝒊𝒔𝒔𝒖𝒆 𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 𝒍𝒆𝒏𝒈𝒕𝒉
 

Similarly, the load is quantified through the stress, 𝝈 

𝝈 =
𝒇𝒐𝒓𝒄𝒆

𝒕𝒊𝒔𝒔𝒖𝒆 𝒄𝒓𝒐𝒔𝒔-𝒔𝒆𝒄𝒕𝒊𝒐𝒏𝒂𝒍 𝒂𝒓𝒆𝒂
 

A measure of tissue stiffness is then Young’s modulus, 𝑬, defined as: 

𝐸 =  
𝜎(𝜖)

𝜖
 

Here we explicitly note that the stress depends on the strain; in fact, for soft tissues, 

this dependence is usually non-linear so that Young’s modulus is not a constant value, 

but one that varies with the strain. In this case, we can describe tissue stiffness by an 

effective Young’s modulus, or more simply, by “the modulus”. The implication is that 

comparison of stiffness values from different studies is strictly only valid when the extent 

of tissue deformation is comparable between studies. 

In addition to the magnitude of strain, the effective Young’s modulus of soft tissues 

typically depends on a number of other factors, including how the external force is 

applied (i.e. direction, rate of application) and whether the tissue is in tension or 
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compression. Importantly for any discussion of TM stiffness, it should be noted that soft 

tissues are much softer when they are loaded in compression vs. when they are loaded in 

tension.  

Taking all the above into consideration, the actual value of the effective Young’s 

modulus should be interpreted as a general indication of tissue stiffness that may not be 

relevant in all situations. More realistic descriptions of tissue biomechanical behavior 

require more complex formulations that are beyond the scope of this thesis [31, 32]. 

Nonetheless, measured modulus values are still useful since they can be used for relative 

comparisons of tissue stiffness between samples (e.g. normal vs. glaucomatous) if the 

testing conditions are identical between samples. 

1.4.2 Tissue Constituents Contributing to TM Stiffness 

In general, tissue stiffness depends on both cells and extracellular matrix (ECM), and 

it is important to note that these two components interact in multiple ways in all tissues. 

Notably, in addition to matricellular signaling pathways and modification of the matrix 

by the resident cells, it is well known that cells directly sense and respond to the stiffness 

and topography of their underlying substrate [33-36]. For example, fibroblasts change 

their internal stiffness to try to match that of a stiffer substrate by enhancing actin 

polymerization and cross-linking [37]. Similarly, airway smooth muscle cells increase 

their baseline contractile tone in response to increased substrate stiffness by upregulating 

their contractile protein expression [38].  

Accordingly, we expect the stiffness of human TM to depend in a complex fashion on 

the resident TM cells, the ECM, and the interactions between the two [39-43]. It is known 
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that TM cells are contractile [44] and that elevated outflow resistance can be partly due to 

an increase in TM tone [45]. Further, TM cell contraction can direct ECM reorganization, 

and thus it has been hypothesized that the increased contraction state of TM cells in 

POAG might be associated with a stiffer TM [42]. Additionally, it is suggested that 

stiffness changes in the ECM of TM may in turn induce alterations in the mechanical 

properties of the TM cell itself [30]. The biomechanical interaction between cells and 

ECM, and the likely modulation of this interaction in disease, make it difficult to 

“cleanly” determine the relative contributions of cells and ECM to overall TM stiffness 

and stiffness changes. 

1.5 Measurements of TM Stiffness in Different Species 

1.5.1 Human 

The stiffness of human TM has been determined directly and indirectly in several 

studies. There are currently two approaches for direct measurement: compression 

(indentation) testing and tensile testing. In view of the Discussion in Section 1.4.1, 

modulus values obtained from these two techniques are not expected to be of comparable 

magnitudes. Atomic force microscopy (AFM) is an example of a compressive testing 

modality, with the details of the cellular deformation field depending strongly on factors 

such as cantilever tip geometry and indentation depth [46].  

In an important early study, the compressive modulus of human TM was measured 

using AFM by Last et al. (2011). They found that TM stiffness was 20 times greater in 

glaucomatous eyes compared to normal eyes (glaucomatous eyes: mean, 80.8 kPa, range, 

0.5 – 565.3 kPa; normal eyes: mean, 4.0 kPa, range, 0.5 – 10 kPa). However, in this 
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study, measurements were performed on excised TM, which may affect stiffness, due for 

example to the loss of ciliary muscle attachments and tension. Furthermore, it was 

possible that the cyanoacrylate glue, used to secure the tissue for AFM, may have 

affected the measurements [47-49]. Most importantly, and relevant to the interpretation 

of all measurements on human glaucomatous TM samples, are the possible confounding 

effects of glaucoma medications. Post mortem glaucomatous donor eyes have almost 

inevitably been treated with outflow drugs (to increase unconventional outflow and/or 

suppress AH production), and the long-term effects of these drugs on TM stiffness, either 

to stiffen or soften the TM, is unknown but potentially significant due to e.g. sustained 

under-perfusion of the TM as secondary effects of prostaglandins or beta-blockers. 

Previous studies have shown that prostaglandins led to loss of ECM components from the 

cribriform region and disconnection of the TM cells from the ECM, which may soften the 

TM [50]. Further, timolol, a type of beta-blocker, induced degeneration of TM 

endothelium in some regions, which would presumably soften the TM, while in other 

areas, the TM was densified and collapsed with accumulation of pigment granules within 

TM cells [51], which would presumably increase TM stiffness. Thus, we must bear in 

mind the possibility that any reported stiffness alterations in glaucomatous TM could be 

epiphenomenon unrelated to the pathogenesis of glaucoma per se, underscoring the 

importance of making similar measurements in animal models so as to potentially 

uncover mechanistic links between TM stiffness and outflow resistance. 

Camras et al. [52, 53] subsequently measured the tensile stiffness of both normal and 

glaucomatous human TM via uniaxial tension testing, and found that Young’s modulus 

of glaucomatous TM was approximately one-fifth that of normal TM, contradicting Last 
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et al.’s (2011) results. A partial explanation for this difference may be related to the 

different modes of testing used (tensile vs compressive). Additionally, different tissue 

structures were involved in those two studies. In Last’s study (2011), the stiffness of the 

JCT and inner wall of SC was primarily measured, while in Camras’ study, TM stiffness 

was likely determined primarily by the corneoscleral portion of the TM, since it makes up 

the majority of TM volume. It is also notable that the stiffness values reported by Camras 

et al. were extremely large (many times stiffer than sclera), which is hard to understand 

and to reconcile with experience gained from direct manipulation of the very soft TM.  

Turning now to indirect methods, Johnson et al. (2015) used an analytical beam-

bending model to obtain an estimate of TM stiffness. They visualized in vivo changes in 

TM and SC thickness by optical coherence tomography (OCT) as IOP was increased, and 

then used this information to estimate the elastic modulus of the TM. They calculated an 

average elastic modulus for the human TM of 128 kPa, a value between that measured by 

Last et al. and Camras et al. Another recently published paper [54] proposed a new 

theoretical framework for mechanical analysis of the TM, asserting the meshwork to be 

anisotropic and significantly stiffer in the circumferential direction compared to the 

transverse direction. This model demonstrated that large discrepancies in the reported 

Young’s modulus of TM could be due to the anisotropy of the tissue. 

Because the inner wall of SC is potentially important in determining outflow 

resistance, the stiffness of SC endothelial (SCE) cells has also been specifically 

investigated. Overby et al. [55] measured the stiffness of both the cortical and subcortical 

components of the cytoskeleton by AFM in cultured SCE cells. Importantly, the stiffness 

of SCE cells from glaucomatous human eyes was found to be higher than those from 
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healthy eyes using a 10-µm AFM tip (glaucomatous eyes: mean ± SEM, 1.24 ± 0.11 kPa; 

normal eyes: 0.79 ± 0.10 kPa). One possible explanation for this finding may be that the 

ECM underlying SCE cells is stiffer in the glaucomatous TM vs normal eyes, since as 

noted above, the mechanical properties of a cell’s microenvironment affect cell stiffness 

[37, 56]. In fact, Overby et al. (2014) investigated the influence of substrate stiffness on 

SC cells using AFM and optical magnetic twisting cytometry, and discovered that both 

normal and glaucomatous SC cells stiffen in response to increasingly stiffer substrates. 

More interestingly, glaucomatous SC cells exhibited higher degree of stiffening than 

normal SC cells. They also examined the expression of genes related to ECM remodeling 

and found that DCN and BMP4 had lower expression in glaucomatous SC cells 

compared to normal SC cells, but that DCN and CTGF were strongly up-regulated by 

increased substrate stiffness in glaucomatous SC cells. This confirms that substrate 

stiffness affects SCE cell behavior, which may in turn lead to changes in SCE cell 

stiffness.  

1.5.2 Non-human primates 

A recent study measured TM stiffness in laser-induced experimental glaucoma monkeys, 

and observed softening of the unlasered parts of the TM compared to untreated controls 

[57]. Those data suggest that a compensatory mechanism may exist in the TM, whereby 

unlasered (ostensibly uninjured) TM may adaptively soften to increase local outflow in 

response to increased IOP after laser damage. Combined with the findings observed in 

human eyes, it may be the case that this compensatory mechanism is somehow impaired in 

human glaucoma patients.   
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1.5.3 Pigs 

Porcine TM stiffness has been investigated by both compressive and tensile testing.  

The average compressive modulus was found to be 1.38 kPa, as measured by AFM [58]. 

However, the tensile stiffness reported by Camras et al. [52, 59] was 2490 kPa, which is 

three orders of magnitude higher than the compressive modulus. The huge discrepancy 

may again be partly due to different measurement techniques used; however, as was the 

case for human tissue, the TM stiffnesses measured by tensile testing were surprisingly 

large. 

1.5.4 Rabbits 

The mean (± SD) stiffness of rabbit TM was measured by AFM as 1.03 ± 0.55 kPa 

[60]. Unfortunately, no detailed description of AFM measurement was provided in this 

study, such as tissue preparation protocol and measurement locations (e.g. which part of 

the TM was indented). The same study reported that after topical administration of 0.1 % 

dexamethasone (DEX) in vivo for 3 weeks, the elastic modulus of TMs in DEX-treated 

eyes was 3.89 ± 2.55 kPa, which was significantly larger than that in control eyes. This is 

particularly interesting in view of the known tendency of DEX to increase intraocular 

pressure [61, 62]. 

1.5.5 Rats 

TM stiffness was measured in rats using AFM by Huang et al. [63]. In their study, 

Evans blue dye was perfused into the eye before measurement to help locate the TM. The 

anterior segment was then dissected and flat-mounted with the TM facing upwards. They 
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found the geometric mean TM stiffness to be 162 Pa; however, there were some 

limitations to this study. Evans blue is not specific to the TM, making it difficult to 

definitively identify the TM location under the AFM microscope. Also, the integrity of 

the TM was not examined at locations where measurements were made. Finally, it is 

conceivable that Evans blue dye itself may affect stiffness as it binds to the tissue.  

1.5.6 Mice 

In a glaucoma mouse model (overexpression of BMP-2 in conventional outflow 

tissue), Young’s modulus of the TM was estimated by means of spectral domain optical 

coherence tomography [64]. In this study, the relationship between IOP and SC lumen 

area was used to determine TM stiffness, using the same beam deflection model 

described by Johnson et al. [65]. TM stiffness was estimated to be 2.16 kPa in control 

eyes; in BMP-2 treated eyes this value increased by approximately 20% on day 7 and 

more than doubled on day 10 after treatment. One limitation of the theoretical model used 

in this study is that all parameters were assumed to be identical for all SCs, which is 

likely not valid, since in reality, variations in parameters such as the undeformed height 

of the SC (SC height when IOP equals collector channel pressure) will occur from one 

eye to another.  

1.6 Factors and Agents Affecting TM Stiffness 

In addition to disease state, there are a number of factors and agents that are known to 

alter TM stiffness; here, we selectively review several important studies in this area. 
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1.6.1 Lysophospholipids 

Two lysophospholipids, lysophosphatidic acid (LPA) and sphingosine-1-phosphate 

(S1P), are known to increase outflow resistance and thus have the potential to be 

involved in the regulation of aqueous humor outflow. In TM cells, it has been shown that 

LPA increased the expression of  proteins such as α-smooth muscle actin (α-SMA), 

fibroblast specific protein-1 [66], and connective tissue growth factor (CTGF) [67]. 

Although the influence of LPA or S1P on TM stiffness has not been directly measured, it 

has been suggested that both may activate a wide variety of intracellular signaling 

pathways (such as Rho/Rho kinase and protein kinase) that would affect contraction and 

actin cytoskeletal organization, which would in turn affect TM cell stiffness [68]. 

Consistent with this understanding, S1P and LPA caused an increase in cell stiffness of 

up to 200 per cent in primary cultures of human SCE [69].        

1.6.2 Rho-associated Protein Kinase Inhibitors 

The TM is known to express many components of the Rho signaling pathway such as 

ROCK1 and ROCK2 [70]. In recent years, Rho-associated protein kinase (ROCK) 

inhibitors have emerged as a potential treatment option for glaucoma due to their IOP 

lowering effect [49, 71]. Specifically, the ROCK inhibitors Y-27632, H-1152 and AR-

12286 have been shown to induce IOP lowering [72-74]. The exact mechanism by which 

ROCK inhibitors work on the TM to increase outflow facility is not completely 

understood. Nevertheless, it has been shown that ROCK inhibitors increase matrix 

metalloproteinase expression in TM cells which may reorganize ECM and widen 

intracellular spaces in the TM, especially in the JCT region [75]. Most relevant to this 
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review, evidence suggests that ROCK inhibitors work by relaxing the TM through 

reduction of actomyosin contractile tone [76].   

1.6.3 Cytoskeletal Disrupting Agents 

Latrunculin B and the serine-threonine kinase inhibitor H-7 are cytoskeletal disrupting 

agents that dramatically increase outflow facility in human and monkey eyes [77, 78]. 

Latrunculin-B substantially decreased human TM cell stiffness after 30 min of exposure 

in vitro [79], while H-7 has been shown to inhibit cell contractility, and expand the 

intercellular spaces in the JCT, accompanied by removal of extracellular material, which 

likely affected TM stiffness [80].       

1.6.4 Dexamethasone 

Treatment with ocular glucocorticoids such as DEX causes increased IOP in 

approximately one third of the normotensive human population. Studies have shown that 

human TM cell stiffness increased approximately two-fold after just three days of 

treatment with DEX, and this was correlated with activation of extracellular signal-

related kinase 1/2 and overexpression of α-SMA [60]. Furthermore, the matrix deposited 

by DEX-treated human TM cells was approximately four-fold stiffer than that deposited 

by control cells, and there was increased expression of matrix proteins such as fibrillin, 

myocilin and decorin [60], demonstrating that chronic treatment with DEX can alter TM 

cell and matrix stiffness. This is consistent with whole tissue measurements in rabbit eyes 

described above.  
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1.6.5 Transforming Growth Factor-β2  

Several investigators have found that the concentration of TGF-𝜷𝟐 is significantly 

increased in the aqueous humor of POAG patients [81-83]. Early studies demonstrated 

that TGF-𝜷𝟐 stimulates a very significant increase in the expression of ECM molecules 

by TM cells [84-89], and importantly, is also involved in the induction of irreversible 

cross-linking of TM fibronectin [85]. Moreover, TGF-𝜷𝟐is known to induce the 

expression of cross-linking enzymes for elastin and collagen [90]. It is possible that this 

increase in cross-linking and deposition may have contributed to the increased TM 

stiffness observed by Last et al. (2011) in glaucomatous eyes.  

1.6.6 Nitric Oxide 

Several studies have indicated that nitric oxide (NO) has an important role in IOP 

homeostasis. A study using isolated strips of bovine TM also indicated that TM contracts 

in response to L-nitroarginine, an inhibitor of NO formation [91]. A more recent study 

using a gel contraction assay demonstrated that NO donors could relax human TM cells 

[92]. Thus, one possible mechanism proposed for the increase in outflow facility induced 

by NO is via TM relaxation [93].   

1.6.7 Senescence 

A recent study [94] demonstrated that senescence may be a causal factor in human TM 

stiffening. They found that the stiffness of senescent TM cells increased approximately 

two-fold, indicating that such cells are intrinsically stiffer as measured by AFM. Further, 

it has been shown that secreted frizzled related protein-1 (SFRP1), a potent inhibitor of a 
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key pathway involved in proliferation regulation, can induce human TM cell stiffening 

[95]. Increased expression of SFRP1 has also been observed in TM cells grown on 

substrates that mimic the stiffness of glaucomatous TM [79, 96].  

1.7 Objectives of this Dissertation 

When the author began her Ph.D., there were only two papers (and one erratum) 

published on mechanical properties of TM at the tissue level [30, 52, 59]. However, there 

were methodological concerns with the above studies, including:  

• the dissection procedure, which required excision of the entire TM, which may 

have damaged/altered the TM, and 

•  the mechanical loading conditions, which in some cases did not replicate the loads 

that occur in vivo.  

Thus, it is important to explore alternate approaches for TM stiffness estimation to 

determine whether TM stiffness is truly altered in eyes with ocular hypertension.  

Further, the above studies did not address the question as to whether any observed 

differences between normal and glaucomatous eyes are primary causes of elevated IOP, 

or are epi-phenomena, since post mortem human glaucomatous eyes have typically been 

treated with anti-glaucoma medications. Thus, it is possible that measured stiffness 

differences were not directly related to the pathogenesis of glaucoma. In 2014, 

Boussommier-Calleja et al. found that there were spontaneous differences in IOP and 

outflow facility between mouse strains [97], and this observation suggests using different 

mouse strains could provide a way to study the relationship between facility and TM 
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stiffness in the absence of medications. However, the technique of measuring TM 

stiffness in mouse eyes had not been presented in the literature likely due to the 

significant challenge of obtaining measurements on the small, delicate TM of this 

species. 

Finally, patients treated with DEX can suffer from steroid-induced ocular 

hypertension, which can in turn lead to steroid-induced glaucoma (SIG).  SIG has 

commonalities with primary open-angle glaucoma, and thus an understanding of TM 

changes in SIG may shed light on TM dysfunction in glaucoma in general. It had been 

reported that the stiffness of cultured TM cells and of their extracellular matrix were 

elevated when treated with DEX [98]. However, whether the increased TM stiffness 

contributes to altered IOP remains unknown. 

From the above, we identified a specific set of questions that need to be answered: 

1. Can we measure human TM stiffness without excising the TM from its 

physiological environment? 

2. Is there a significant correlation between outflow resistance and TM stiffness in 

human eyes? 

3. Can we measure TM stiffness in mice? 

4. Is there a significant correlation between outflow resistance and TM stiffness in 

wild-type mice? 
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5. Is there a significant correlation between outflow resistance and TM stiffness in a 

single mouse strain after DEX treatment? 

This dissertation addressed these questions by developing improved measurement 

approaches to better understand the role of TM biomechanics in the pathogenesis of 

glaucoma. We propose the following objectives: 

Objective 1: Develop a specimen-specific inverse finite element modelling approach 

to deduce mechanical properties of human TM, and compare the differences in TM 

stiffness between normal and glaucomatous eyes. This work will provide a novel and 

improved approach for TM stiffness estimation in human eyes which does not require 

excision of the TM. Additionally, this model can be used for predicting stiffness of other 

outflow structures/tissues (such as transluminal structures across SC and septae at 

collector channels (CC)), which may also play a role in influencing aqueous humor 

drainage and are difficult to assess experimentally. The objective aims to answer 

questions 1 and 2. 

Objective 2: Develop a cryosection-based AFM technique to measure TM stiffness in 

mice and study the correlation between TM stiffness and outflow resistance across 

different strains of mice. This work will provide a way to directly measure TM stiffness 

in mice where the TM can be clearly localized. It could be used in future work to study 

issues such as identification of molecular factors and associated genes involved in TM 

stiffness regulation. The objective aims to answer question 3 and 4. 



www.manaraa.com

 24 

Objective 3: Apply the same AFM technique to measure the change of TM stiffness in 

DEX-treated mice and its correlation with outflow resistance. The objective aims to 

answer question 5. 

This dissertation is organized around those 3 objectives, and each of the following 

chapters address one of the three objectives. 

Chapter 2 describes the development of a specimen-specific inverse finite element 

model to deduce the material properties of normal and glaucomatous human TM 

(Objective 1). This work was carried out in collaboration with Dr. Murray A. Johnstone 

and Dr. Ted S. Acott. This study showed that combining OCT and inverse FEM could be 

an alternative approach to measure human TM stiffness in a less invasive way. En face 

AFM was also performed on the same tissue, validating the trend of TM stiffness 

difference between normal and glaucomatous eyes observed by computer modeling. This 

chapter was published in September 2017. 

Chapter 3 describes the development of a method to directly measure mouse TM 

stiffness using AFM and investigates the relationship between TM stiffness and aqueous 

outflow dynamics in wild-type mice (Objective 2). It is worth mentioning that the idea of 

using cryosections was partially inspired by previous studies in which tissue stiffness was 

measured by AFM on cryosections, e.g. human lamina cribrosa, porcine cornea and 

pericellular matrix of porcine articular cartilage [99-101].  

A detailed protocol is described for outflow facility and TM stiffness measurements in 

mice, which has been published in Experimental Eye Research [102]. It revealed that 

outflow resistance was positively correlated with compressive TM stiffness. This 
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represents the first experimental characterization of the relationship between mechanical 

properties of TM and outflow dynamics. This chapter and chapter 4 were combined as a 

paper and have been submitted for publication in November 2017. 

Chapter 4 illustrates the application of the AFM method developed in Chapter 3 to 

evaluate the effects of DEX treatment on TM stiffness in mice (Objective 3). This work 

was carried out as a collaboration with the lab of Dr. W. Daniel Stamer at Duke 

University. It details how DEX was delivered to the eyes and how IOP, facility and TM 

stiffness were changed by the treatment. This study confirmed the positive correlation 

between IOP and outflow resistance that we discovered using mice with different genetic 

backgrounds. In addition, a significant correlation between aqueous outflow resistance 

and TM stiffness was found in DEX-treated mice. Together with chapter 3, these results 

demonstrate that the mechanical properties of the TM are closely involved in the function 

of the outflow pathway across a range of conditions.  
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CHAPTER 2. ESTIMATING HUMAN TRABECULAR 

MESHWORK STIFFNESS BY NUMERICAL MODELING AND 

ADVANCED OCT IMAGING 

This chapter is based on a published journal paper: Wang K, Johnstone MA, Xin C, et 

al. Estimating human trabecular meshwork stiffness by numerical modeling and 

advanced OCT imaging. Investigative Ophthalmology & Visual Science September 

2017, Vol.58, 4809-4817. doi:10.1167/iovs.17-22175 

2.1  Abstract  

Purpose: To estimate human trabecular meshwork (hTM) stiffness, thought to be 

elevated in glaucoma, using a novel indirect approach and to compare results with direct 

en face atomic force microscopy (AFM) measurements. 

Methods: Post mortem human eyes were perfused to measure outflow facility and 

identify high- and low-flow regions (HF, LF) by tracer. Optical coherence tomography 

(OCT) images were obtained as Schlemm’s canal (SC) luminal pressure was directly 

manipulated. TM stiffness was deduced by an inverse Finite Element Modeling (FEM) 

approach. A series of AFM forcemaps was acquired along a line traversing the anterior 

angle on a radially cut flat-mount corneoscleral wedge with TM facing upward. 

Results: The elastic modulus of normal hTM estimated by inverse FEM was 70±20 

kPa (mean ± SD), while glaucomatous hTM was slightly stiffer (98±19 kPa). This trend 

was consistent with TM stiffnesses measured by AFM: normal hTM stiffness = 
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1.37±0.56 kPa, lower than glaucomatous hTM stiffness (2.75±1.19 kPa). None of these 

differences were statistically significant. TM in HF wedges was softer than that in LF 

wedges for both normal and glaucomatous eyes based on the inverse FEM approach, but 

not by AFM. Outflow facility was significantly correlated with TM stiffness estimated by 

FEM in 6 human eyes (p = 0.018). 

Conclusions: TM stiffness is higher, but only modestly so, in glaucomatous patients. 

Outflow facility in both normal and glaucomatous human eyes appears to associate with 

TM stiffness. This evidence motivates further studies to investigate factors underlying 

TM biomechanical property regulation.  

2.2 Introduction  

The cause of increased outflow resistance leading to ocular hypertension in glaucoma 

remains unknown. However, several intriguing studies suggest that human trabecular 

meshwork (hTM) stiffness may differ in glaucomatous vs. unaffected eyes [102]. These 

studies raise the possibility that TM stiffness might be involved in the pathogenesis of 

ocular hypertension in glaucoma. Last et al., in an important early study, used atomic 

force microscopy (AFM) in dissected TM samples from postmortem eyes to show that 

TM stiffness was markedly elevated in glaucomatous vs. normal eyes [30]. Subsequently, 

Camras et al. examined the tensile stiffness of dissected human TM [52, 53, 59] via 

uniaxial testing. This study found that the glaucomatous TM was softer than normal TM, 

contrary to the results of the AFM testing. This discrepancy might be in part due to 

different testing modes used (tension vs. compression). Johnson et al. [65] estimated 

hTM stiffness in vivo in normal eyes using OCT imaging and an indirect method based 
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on changes in TM geometry. In all of the above studies, there were methodological 

concerns, including: dissection that may have damaged/altered the TM; different 

mechanical loading conditions which in some cases did not replicate the loads that occur 

in vivo; and/or over-simplified modeling assumptions. In view of the limitations of the 

above studies, it is important to explore alternate approaches for TM stiffness estimation 

to determine whether TM stiffness is truly altered in eyes with ocular hypertension. 

Optical coherence tomography (OCT) is a cross-sectional, three-dimensional imaging 

technique with high spatial resolution (<20 um) [103]. Recent studies have used OCT for 

characterization of tissue structure and movement inside the eye [104-108]. Specifically, 

spectral domain OCT (SD-OCT) was used to image radial limbal segments in ex vivo 

primate eyes. A cannula was inserted into SC to control pressure inside SC lumen. A 

pressure gradient was introduced across the TM that differed from the gradient expected 

due to standing, sitting, supine or prone positions. Instead, pressure gradients were typical 

of those encountered during body inversion, e.g. gymnastics, yoga and the spectrum of 

partial inversions that occur in daily life. SD-OCT was able to capture the dynamic 

motion of the TM, SC and collector channels (CCs) as SC luminal pressure was changed. 

The inverse finite element method (FEM) is a computer modeling technique that has 

been widely used to estimate tissue biomechanical properties. The basic idea behind 

inverse FEM is to select input parameters for computational simulations that minimize 

the difference(s) between simulated and measured outcomes (e.g. tissue displacement, 

strain, etc.), thereby allowing indirect determination of such parameter values from 

experimental data [109-111]. 
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The goal of this paper was to determine human TM stiffness in normal and 

glaucomatous eyes using a novel approach combining OCT and the inverse FEM. We 

reasoned that this technique would be less disruptive to TM structure than previous 

approaches. Additionally, we carried out en face AFM stiffness measurements on the 

same hTM samples to compare with results obtained from the OCT/inverse FEM 

approach. Finally, stiffness data were correlated with outflow facility in some eyes. 

2.3 Methods 

In brief, human eyes were obtained from eye banks, and anterior segments were 

perfused in Portland at OHSU under organ culture conditions [112] to measure outflow 

facility and identify high- and low-flow (HF, LF) regions of the TM. Anterior segment 

HF and LF wedges in culture medium were then sent on ice to Seattle by overnight 

express and received by 10 AM the next day for OCT scanning. Finally, the same wedges 

were sent to Atlanta where AFM measurements on the TM were carried out, and post hoc 

analysis of the OCT scans was undertaken.  

In more detail, human eyes (5 normal and 3 glaucomatous; ages 74-88 years) were 

obtained within 72 hours postmortem from Oregon VisionGift eye bank. All research 

followed the tenets of the Declaration of Helsinki. Details on the glaucoma or normal 

donors included medications, but not detailed Ophthalmologist’s records. Anterior 

segments were immediately dissected, gently removing the lens, iris, ciliary body and 

posterior pole, while retaining the cornea, approximately 5-10 mm of sclera, the TM and 

SC. These anterior segments were immediately placed in stationary anterior segment 

organ culture and maintained for approximately 5 days [112]. Media and conditions were 



www.manaraa.com

 30 

the same except a 1:1 mix of high glucose:low glucose DMEM was used. Anterior 

segments were then mounted on perfusion chambers and perfused at a constant pressure 

of 8.8 mm Hg (corresponding to approximately 15 mmHg in vivo), with gravimetric fluid 

flow rates assessed using minor modifications from the original method [113]. After flow 

rates had stabilized, we averaged the perfusion outflow facility (Cpf = flow rate in µl/min 

/ perfusion pressure in mm Hg) over 2-3 days. To mark high flow areas in a manner that 

did not affect the AFM measurements, CellMask plasma membrane stain (ThermoFisher 

Scientific) was perfused for 1 hour prior to termination of flow experiments. HF and LF 

wedges approximately 4 mm wide were cut, based on relative CellMask staining 

intensity, and sent to Seattle for OCT scanning. OCT scanning was performed the 

following day using the same formulation of culture media used at OHSU. 

2.3.1 OCT 

Anterior segment wedges encompassing the cornea, limbal region with TM, SC and 

approximately 5 mm of sclera were mounted in a petri dish with pins, with the inner TM 

surface facing upward. The entire wedge was submerged in a saline bath, eliminating 

possible surface tension effects on the open end of SC. This uniform and stable saline 

bath surface also helped to eliminate surface motion artifacts when dynamic TM motion 

occurred (Figure 2.1). A crucial factor in the protocol was a previously described [104] 

custom-made steeply tapered and flexible insertion cannula fashioned from PE 60 tubing 

with an outside diameter of 1.22 mm a taper length of 4.5 mm and an outside diameter at 

the tip of 130-150 µm that provided a tight fit when inserted into SC.   
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The cannula was inserted into SC with the help of a dissecting microscope and a 

micromanipulator while the other end remained free (open). The tip of the cannula slid 

into, and made a tight contact with, the canal lumen. The other end of the cannula was 

connected to a reservoir filled with saline, so that SC lumen pressure could be controlled 

by changing the height of the reservoir. To capture the dynamic movement of tissues 

along the SC lumen at high resolution, the SD-OCT imaging probe was adjusted to face 

the TM. A series of cross-sectional scans of the wedge were captured at multiple 

locations for different reservoir pressures (e.g. 0, 5, 10, 20, 30 and 50 mmHg). The 

distance between two adjacent scans was about 10 µm. The central wavelength of the 

SD-OCT system was 1310 nm and the spatial resolution in each scan was 5 and 5.75 µm 

in axial and lateral dimensions, respectively. The imaging was performed through air 

without the OCT probe touching on the sample. The system was capable of an imaging 

speed of 92 kHz, i.e. 92,000 A-scans per second. At this speed, a system sensitivity (or 

dynamic range) of 105 dB was measured when the light power on the sample was 5 mW. 

Thus, for each location along TM/SC (typically 1-3 random locations were scanned for 

each wedge), a set of images were obtained for assessment of tissue configuration at 

several pressure levels (Figure 2.1).  
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Figure 2.1: Schematic overview of experimental setup, including the SD-OCT 

system, a reservoir used for controlling pressure in Schlemm’s canal (SC), a cannula 

and a Petri dish. The triangular-shaped object is a wedge of limbal tissue. 

2.3.2 Inverse FEM 

For 2-3 wedges per eye and 1-3 cross-sectional locations per wedge, we created a 

pseudo-2D FEM geometry in Abaqus (version 6.16, Simulia Corporation, Providence, 

RI). This pseudo-2D model was formed by “extruding” the 2D cross-section for a 

distance of 10 microns from a single OCT scan at a low SC pressure (Figure 2.2). OCT 

scans were used only if a clear, open SC lumen could be identified.  
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Figure 2.2: (Upper) Representative OCT image at a low SC luminal pressure (here, 

0 mmHg) with delineated tissue structures superimposed. (Bottom) Geometry 

created in Abaqus with mesh superimposed. The total number of hexahedral 

elements for this mesh was 55358, with typical edge lengths from 5-10 µm. Scale 

bar: 250 µm. Sample: inferior temporal quadrant of Eye 77R. 

In more detail, tissue components including TM, SC, sclera/cornea and ciliary body 

(CB) were first delineated from the OCT scan and verified by one co-author (MAJ) by 

carefully looking at the relative deformation of outflow tissues from the 3D OCT videos 

of SC lumen during the pressurization interval. The model was then meshed with 8-node 

hexahedral elements (edge lengths from 5 to 15 µm, as justified in the Supplementary 

Methods). The meshed model was then imported from Abaqus into PreView (FEBio 

package) [114]. Tissues were treated as incompressible, isotropic and nonlinearly 

hyperelastic (neo-Hookean material model) [115]. The strain energy density function for 

such a material is: 
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                                                   𝑾 = 𝑪𝟏 (𝑰𝟏 − 𝟑)                                                       (2) 

where 𝑪𝟏 =
𝑬

𝟒(𝟏+𝒗)
 is a stiffness parameter (with 𝑬 representing Young’s modulus and 𝒗 

representing Poisson’s ratio) and 𝑰𝟏 is the first invariant of the deviatoric component of 

the right Cauchy-Green deformation tensor.  

A tissue-specific fixed value for the parameter 𝑪𝟏 was assigned to each tissue 

component (except TM) according to either literature reports, or, for tissues lacking 

literature reports of their stiffness, our best estimates. Specifically, sclera/cornea stiffness 

(𝑬) was taken as 2700 kPa [116], while CB stiffness was estimated as 100 kPa, close to 

the stiffness of vessels [116], since CB contains the ciliary muscle, vessels, and fibrous 

connective tissue. Poisson’s ratio was assumed to be 0.5. Fortunately, a sensitivity 

analysis (see Supplemental Materials) demonstrated that the assumed CB stiffness value 

had a limited impact on the resulting estimated TM stiffness. Unlike the rest of the tissue 

components, the stiffness of the TM (𝑬) was allowed to vary over a range of values, 

typically from 18-300 kPa. 

Loading conditions were specified based on those that were imposed experimentally. 

The plane strain assumption was made when imposing boundary conditions, suitable for 

the case in which SC cross-section shape changed slowly over axial distances comparable 

to the characteristic dimensions of the SC cross-section. The bottom surface of sclera was 

fixed in all three directions and one of the two side faces containing TM and SC was 

fixed in its normal direction. A pressure load was applied to the walls of SC lumen, 

carefully corrected for losses in the delivery tubing, the cannula and the distance from the 

tip of cannula to the OCT scan location (see Appendix A). Due to the small cross-
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sectional area of the SC lumen, the majority of the computed pressure drop typically 

occurred within SC. Young’s modulus for TM was allowed to vary over a certain range 

in steps of 6 kPa, and tissue deformations were computed for each TM stiffness using the 

open source FEBio package (version 2.2.2, Musculoskeletal Research Lab at the 

University of Utah) [114]. Differences in SC lumen size (area) between simulations and 

experiments were then calculated as  

                Area difference = √(𝑨𝒓𝒆𝒂𝑶𝑪𝑻 − 𝑨𝒓𝒆𝒂𝑭𝑬𝑴)𝟐                                           (3) 

where subscripts “OCT” and “FEM” refer to experimentally measured and numerically 

simulated cross-sectional areas, respectively. The TM stiffness value that gave the 

minimum difference in SC cross-sectional area was then taken as the estimated local TM 

stiffness for that model/cross-section (Figure 2.3).  

As a quality control step, SC lumen contours were compared between OCT images 

and simulations at the corresponding elevated pressure (Figure 2.3, Left). We excluded a 

total of 2 quadrants when the match in contour shape was poor even if the SC cross-

sectional area agreed well between the numerical simulation and the experimental data 

(Figure 2.4).  

Finally, the average value of estimated TM stiffnesses over all modeled quadrants in 

one eye was taken as the TM stiffness of that eye.  
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Figure 2.3: Comparison between SC contours as measured by OCT and as 

computed for a range of TM stiffnesses. (Left) SC contours at reservoir pressures of 

0 mmHg and 20 mmHg are shown in red and black, respectively. The trabecular 

meshwork lies above SC lumen, with sclera immediately below. The blue dots 

represent a set of computed SC contours from simulations at 20 mmHg over a range 

of TM stiffnesses. Blue dots are not visible along the lower portion of the figure 

because there was essentially no computed deformation of the SC outer wall, i.e. 

blue dots are overlain by the red dots in this region. (Right) Quantification of SC 

lumen area difference, as computed from equation (2), at a reservoir pressure of 20 

mmHg for different numerically specified Young’s moduli for the TM (x-axis). A 

minimum difference was observed at 48 kPa, which was therefore taken as the best 

estimate of Young’s modulus for the TM at this location. Scale bar: 50 µm. Sample: 

inferior temporal quadrant of Eye 77R. 

 

Figure 2.4: A representative poor match of SC contours. Red and black dots are SC 

contours at reservoir pressures of 0 mmHg and 10 mmHg, respectively. Tissue 

orientation and symbols are the same as those in Figure 3. Scale bar: 50 µm. 

Sample: High-flow quadrant of Eye 111. 

2.3.3 AFM 

The wedges, immersed into centrifuge tubes containing organ culture media, were 

then shipped overnight from Seattle to Atlanta on wet ice (typical postmortem time on 

receipt: 15 days). Upon receipt, each wedge was glued (Super glue, Loctite, Germany) 
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onto a Petri dish with the same orientation as in the OCT experiment (glue was applied at 

the three corners of the wedge which were far from the limbal region). Samples were 

transferred to a MFD-3D AFM (Asylum Research, Santa Barbara, CA) and immersed 

into the same organ culture media. Silicon nitride cantilevers with an attached 

borosilicate sphere (radius, 5 µm; nominal spring constant, 0.1 N/m; Novascan 

Technologies, Inc., Ames, IA) were used. Cantilevers were calibrated by measuring the 

thermally induced motion of the unloaded cantilever before measurements. A series of 

forcemaps were obtained in regions located along a line starting on the cornea and ending 

on the sclera. The starting location for this line was determined visually with the aid of 

markers on the Petri dish. Specifically, the markers were several grids which were drawn 

on the bottom of the Petri dishes using a “Sharpie” marker that could be seen through the 

transparent cornea. Even with marker’s help, there was still some uncertainty in 

measurement location due to the thickness of the samples. When observed from the 

bottom camera, the cantilever tip and tissue were usually not focused on the same plane. 

Thus, the desired measurement location and the cantilever tip may not have been in the 

same spot. To estimate the uncertainty in measurement location, the cantilever tip was 

first moved to barely touch the surface of a glass slide and the bottom camera was 

focused on that surface. Then the cantilever tip was raised by 0.8 mm (typical wedge 

thickness at the limbus) and the camera was refocused on the cantilever tip. The distance 

between cantilever tip before and after the refocusing was used to estimate the 

uncertainty of the measurement location. 

Each forcemap region consisted of 16 force curves in a 4 × 4 grid covering a scan 

region of 20 µm x 20 µm. The center-to-center distance between adjacent forcemap 
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regions was 20-80 µm. Each force curve was taken at a rate of 8 µm/s and a typical 

indentation depth was 0.5-1 µm. The indentation depth was controlled in this relatively 

narrow range for all the AFM measurements to avoid substrate effects, since using larger 

indentations resulted in much larger tissue stiffnesses. For the 16 force curves in each 

forcemap region, those lacking either linear behavior or a clear cantilever contact point 

were discarded from the analysis. The remaining force curves were fit to a Hertz model 

(Equation 4) for a sphere in contact with a flat surface to determine the local compressive 

modulus (Igor Pro software, 6.34A; Figure 2.5) 

                                              𝑬 =  
𝟑(𝟏−𝒗𝟐)𝑭

𝟒𝑹𝟏/𝟐𝜹𝟑/𝟐                                                                 (4) 

In Equation 4, 𝑬 is Young’s modulus, 𝑭 is the force applied by cantilever bending, 𝑹 

is the radius of the sphere on the cantilever tip, 𝜹 is the actual sample indentation, and 𝒗 

is the sample’s Poisson’s ratio, taken as 0.5. In Figure 2.5 [102], the force experienced 

by the cantilever tip is zero when the cantilever is far from the sample surface. The force 

increases as the cantilever tip touches and indents the sample surface. The cantilever 

starts to retract once it reaches a maximum force, leading to a decreasing force.  
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Figure 2.5: Typical force-indentation curve and fitting to raw data. Red and blue 

are advancing curves for soft and stiff locations respectively. Dashed lines are curve 

fit. 

The average modulus from the valid measurement points within a forcemap region 

was taken as the compressive modulus of that region. These moduli from all forcemap 

regions in one sample were then plotted as a function of region location along the 

measurement line (cornea to sclera). The TM region was putatively defined as the 

anterior-most pigmented area that was adjacent to the cornea plus the narrow white band, 

representing the scleral spur (shown as the region between the two dashed lines in Figure 

2.6). The mean of the modulus values along the measurement line traversing the TM 

region was taken as the TM stiffness of that location. Typically, 2-3 such locations were 

measured for each wedge, and the average was taken as the TM stiffness for that wedge 

(quadrant), as shown in Table 2.1. Usually, tissue was stiffest in the cornea and softened 

gradually as the measurement location moved posteriorly. Surprisingly, in most cases, the 

sclera had a lower modulus than the cornea. However, it is very likely that there was 

some residual iris root, ciliary body, retinal pigment epithelium or choroid left near the 

limbal region since we didn’t aggressively clean or scrape the sclera during dissection. 

These tissues are expected to be soft and could explain the low “scleral” modulus.  
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Figure 2.6: A representative top view of a wedge (Glaucomatous eye 122) from the 

dissection microscope with TM facing upward. AFM measurements started in the 

cornea on the right side, along the measurement line (yellow solid line) and towards 

to the sclera. The measured compressive modulus of each location along the 

measurement line is indicated in blue dots. The area between the two dashed lines is 

taken as the TM region. Error bar: standard deviation. Tissue was stiff in the 

cornea and decreased gradually as the measurement location moved posteriorly. 

Relatively low modulus was obtained in sclera region probably due to 

measurements on residual iris root or ciliary body. Sclera, cornea, TM and sclera 

spur (SS) are labeled. 

2.4 Results 

TM stiffnesses for 6 normal and 4 glaucomatous human eyes were successfully 

estimated using the inverse FEM method (Table 2.1). We were unable to use this 

approach for one (Eye 121) out of the five glaucomatous eyes due to the lack of a clear 

and open SC lumen at the OCT scan locations. The elastic modulus determined in this 

way in normal hTM ranged from 42 to 102 kPa (mean, 70±20 kPa, Table 2.1), while 

glaucomatous hTM samples had slightly larger elastic moduli, ranging from 79-123 kPa 

(mean, 98±19 kPa, Table 2.1).  



www.manaraa.com

 41 

This trend of a slightly stiffer glaucomatous TM was consistent with TM stiffness 

measured by AFM, where hTM stiffness in normal eyes (mean, 1.37±0.56 kPa) was 

lower than that in glaucomatous eyes (mean, 2.75±1.19 kPa). AFM measurements were 

performed on a total of 4 normal and 5 glaucomatous human eyes. We were unable to 

make stiffness measurements on 2 of the 6 normal eyes due to logistical issues. None of 

the above differences between normal and glaucomatous TM stiffness reached statistical 

significance (Mann-Whitney U-test, FEM p = 0.051, AFM p = 0.127); however, we 

suggest it is reasonable to call the p-value of 0.051 associated with the difference in TM 

stiffness estimated by inverse FEM a ‘borderline significant’ result. 

TM stiffness measured by AFM was approximately 1/40 of that estimated by inverse 

FEM. This difference is almost certainly due, at least in part, to different modes of testing 

(compressive in AFM vs. primarily tensile by SC luminal pressurization), since it is 

known that the type of mechanical load applied to a tissue can result in very different 

mechanical behavior [117]. Specifically, soft tissues are usually much stiffer in tension, 

consistent with our results. Further, the length scales of the two measurement techniques 

were quite different, which could contribute to the discrepancy. The FEM involved 

deformation of the entire TM, while AFM measurements were very local. It has been 

reported that elastic properties of soft tissues can strongly depend on the length scale of 

the measurement technique, since different tissue structural components can be involved 

at different length scales [118]. We examined the correlation between TM stiffnesses 

determined by inverse FEM vs. that determined by AFM (Figure 2.7). Interestingly, 

there was a strong positive correlation (p = 0.009) between TM stiffness measured by 

AFM and that estimated by inverse FEM (n=8, 4 normal and 4 glaucomatous eyes were 
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both measured by FEM and AFM). From the above evidence, it appears that combining 

numerical modeling and OCT has the potential to provide an alternative indirect approach 

to assess hTM stiffness which does not require excision of the TM. 

Outflow facility (Cpf) was measured for 4 normal and 5 glaucomatous eyes (Table 

2.1). We excluded Cpf values for 2 eyes (eyes 125, 126) from further analysis since, 

although they were documented as glaucomatous eyes, they had abnormally high 

facilities (0.54, 0.46 µl/min mmHg, respectively) [27, 52, 119]. After excluding these 

eyes, Cpf of normal eyes was higher (0.24±0.15 µl/min mmHg) compared to that in 

glaucomatous eyes (0.15±0.02 µl/min mmHg), but this difference did not reach statistical 

significance. We then plotted Cpf versus TM stiffness as estimated by inverse FEM 

(Figure 2.8). Despite the limited number of eyes (n=6), the Cpf and TM stiffness were 

significantly correlated (p = 0.018; 𝒓𝟐 = 0.79) suggesting that nearly 80% of the variation 

in Cpf was associated with variation in TM stiffness. None of the two eyes were from the 

same individual, so that the statistical confounding effect of non-independence of paired 

eyes was avoided. 
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Table 2.1: TM stiffness in normal and glaucomatous human eyes obtained by 

inverse FEM and AFM. 

Identifiers FEM AFM 
Cpf at 

8.8 

mmHg 

(µl/min 

mmHg) 

 Eye

# 
Age Gender 

PT 

(hours) 
Quadrants 

TM E for 

each 

quadrant 

(kPa) 

TM E 

for 

each 

eye 

(kPa) 

TM E 

for each 

quadrant 

(kPa) 

TM E for 

each eye 

(kPa) 

Normal 

eyes 

1 77R 79 M 10 

IN 120 

78 

ND 

ND ND IT 48 ND 

ST 66 ND 

2 80R 74 M 25 
SN 60 

60 
ND 

ND ND 
ST 60 ND 

3 111 78 F 29 
HF (24) 

102 
3.15 

1.92 0.11 
LF 102 0.68 

4 115 54 M 43 
HF 36 

69 
0.35 

0.73 0.17 
LF 102 1.11 

5 116 89 M 45 
HF 60 

42 
0.27 

1.09 0.45 
LF 24 1.9 

6 124 78 F 55 
HF 66 

66 
2.62 

1.75 0.23 
LF (108) 0.89 

Glaucoma 

eyes 

1 118 84 F 24 
HF 57 

79 
1.27 

1.45 0.14 
LF 100 1.63 

2 121 88 M 27 
HF ND ND 4.98 

4.23 0.13 
LF ND ND 3.47 

3 122 77 M 22 
HF ND 

90 
2.13 

1.75 0.17 
LF 90 1.36 

*4 125 80 F 67 
HF 108 

102 
3.12 

2.72 (0.54) 
LF 96 2.32 

*5 126 80 F 67 
HF 90 

123 
3.25 

3.62 (0.46) 
LF 156 3.99 

*PT, Postmortem Time from death to stationary culture in Portland; IN, Inferior Nasal; 

IT, Inferior Temple; SN, Superior Nasal; ST, Superior Temple; HF, High-flow; LF, Low-

flow; E = Young’s modulus; ND = not determined; (): discarded value; *: eyes from the 

same individual. 

TM stiffness in HF and LF regions was also compared for both normal and 

glaucomatous eyes (Figure 2.9). TM stiffness determined by inverse FEM was higher in 

LF wedges than that in HF wedges, both in normal and glaucomatous eyes. However, 
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AFM measurements did not show the same trend. In fact, on average, AFM 

measurements of TM stiffness in HF wedges were fairly close or even higher than those 

in LF wedges. However, none of the above comparisons reached statistical significance. 

A power analysis indicated that a total of 42 normal eyes and 12 glaucomatous eyes 

would be needed to reach statistical significance in TM stiffness between HF and LF 

regions for the inverse FEM approach (α = 0.05, power = 0.8; for normal eyes, effect size 

= 0.39; for glaucomatous eyes, effect size = 0.80). A similar analysis for the AFM 

approach indicated that a total of 100 normal eyes and 114 glaucomatous would be 

needed. 

 

Figure 2.7: Cross-plot between TM stiffness measured by two approaches for 4 

normal (blue symbols) and 4 glaucomatous (red symbols) eyes. Only eyes where TM 

stiffness was measured by both AFM and inverse FEM were included. The solid line 

and equation represent the linear regression of the pooled data. 
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Figure 2.8: Cross-plot between TM stiffness (estimated by inverse FEM) and Cpf 

from normal (n=4, blue symbols) and glaucomatous (n=2, red symbols) human eyes. 

Only eyes where both Cpf and TM stiffness were measured were included. The solid 

line and equation represent the linear regression of the pooled data. 

 

Figure 2.9: Regional heterogeneity in normal and glaucomatous eyes. The TM 

stiffness in HF (blue bar) and LF (red bar) wedges obtained by inverse FEM (upper) 

or AFM (bottom) are shown. Mean values from FEM: Normal eyes: 

mean±SD=48±17 kPa for HF and 63±55 kPa for LF; Glaucomatous eyes: 85±26 kPa 

for HF and 117±34 kPa) Mean values from AFM: Normal eyes: 1.60±1.50 kPa for 

HF and 1.15±1.15 kPa for LF; Glaucomatous eyes: 2.95±1.39 kPa for HF and 

2.55±1.14 kPa. Error bars: are standard deviation. HF = high flow; LF = low flow. 
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2.5 Discussion 

This study estimated the stiffness of hTM in normal and glaucomatous eyes using an 

inverse FEM approach, while also performing AFM on the same tissues. Our results 

indicated that TM stiffness is slightly greater in glaucomatous eyes compared to that in 

normal eyes, which is qualitatively consistent with the previous study of Last et al. [30]. 

However, it is extremely important to note that stiffness differences that we observed did 

not reach statistical significance, and the TM stiffnesses of glaucomatous eyes measured 

by AFM were of much smaller magnitude than those observed by Last et al. Thus, our 

results were not quantitatively consistent with those of Last et al [30]. This is most likely 

due to methodological differences: Last et al. dissected the TM and measured the 

stiffness of the outermost part of the tissue (the JCT), while we used intact wedges and 

measured the stiffness of the innermost aspects of the tissue. This methodological 

difference may also explain, at least partially, why our AFM results on HF/LF wedges 

(uveal side) contradict those of a previous study, which measured the stiffness of the JCT 

side of the meshwork, and demonstrated that LF regions of the TM were more rigid than 

HF regions in both normal and glaucomatous TMs [120]. This suggests that any stiffness 

differences in HF vs. LF regions of TM occur closer to the inner wall of SC. 

It is also important to point out that differences in Cpf between the normal and 

glaucomatous eyes did not reach statistical significance. In fact, some of the 

‘glaucomatous’ eyes had facilities that were much higher than that in ‘normal’ eyes. This 

may indicate an inaccurate classification of the donated eyes; all patients that the eye 

bank reported as having glaucoma were included in our study as glaucomatous eyes. 

Some “glaucoma” eyes may have been from patients with normal-tension glaucoma 
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without an outflow system abnormality, and/or facility may have been affected by long-

term use of anti-glaucoma medication (e.g. prostaglandin analogs) [49, 71, 73, 121, 122]. 

However, it is of interest that we did observe a statistically significant correlation 

between Cpf and hTM stiffness when the data was pooled from all eyes. This suggests 

that these factors are highly associated in both normal and glaucomatous eyes, although 

perhaps to a lesser extent than originally suggested by the study of Last et al [30].    

We also point out that the hTM stiffness determined by the inverse FEM method 

cannot be directly quantitatively compared with that measured by AFM, even though the 

two were correlated. This is because several factors differ between the two methods, 

including how the load is applied to the tissue. In the OCT experiments the TM was 

primarily in tension, while in the AFM studies the TM was primarily in compression. 

Soft tissues, such as the TM, can be orders of magnitude softer when loaded in 

compression vs. when they are loaded in tension. Thus, in our study, the Young’s 

modulus deduced by inverse FEM can be interpreted as a general indication of the TM 

tensile stiffness, while the modulus obtained by AFM tends to reveal the local 

compressive stiffness of the inner uveal meshwork. However, comparison of differences 

between normal and glaucoma hTM stiffness within a measurement method should 

remain valid.   

Compared with other data in the literature for hTM (Table 2.2), our estimated FEM 

mean hTM stiffness value is close to that measured by Johnson et al [65]. Instead of 

direct measurement on TM, Johnson et al. used a beam-bending model to predict TM 

stiffness based on in vivo changes in TM and SC thickness which were visualized by 

OCT as IOP was elevated [65]. In that study, the pressure load was applied from the 
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anterior chamber side, not the SC side in our FEM approach. However, in both studies, 

the TM was in tension along a direction which is perpendicular to SC lumen. For AFM 

results, our measured hTM stiffness of normal eyes was on the same scale but slightly 

lower than that measured by Last et al. [30], and much less than that measured by Camras 

et al. [52, 59]. In Camras’ study, the whole dissected TM were stretched in a direction 

parallel to SC with elastic connections disrupted, while in Last’s and our studies, the TM 

was compressed locally from different side of TM. However, our measurements were 

done on an intact wedge where elastic connections to scleral spur should be well 

preserved, as well as any interactions with cornea and to the outer all of SC.  

There are several limitations of our study. First, steady state IOP is usually greater 

than steady state SC luminal pressure, i.e. IOP normally ranges from 10-20 mmHg [123] 

and episcleral venous pressure (EVP) is 7.6 – 11.4 mmHg. The experimental 

pressurization of SC lumen created a pressure gradient in the opposite direction. 

However, it must be recalled that EVP and SC pressure are both highly dynamic. For 

example, activities such as gymnastics and yoga frequently involve body inversion and a 

spectrum of partial inversions is present in many activities. With full inversion, EVP rises 

with a resultant increase in SC pressure [124, 125] and entry of blood into SC [126]. An 

IOP increase occurs within seconds with IOP increasing to as much as 43 mmHg [125]. 

Syndromes that cause persistent EVP and SC pressure increases are associated with IOP 

elevation that can result in an intractable glaucoma [127, 128]. Our SC inflation test is 

therefore not inconsistent with physiological situations. To be conservative, we only 

analyzed OCT scans with reservoir pressures limited to 30 mmHg, assuring luminal 

pressures well below the 43 mmHg documented in clinical studies. 
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Table 2.2: Comparison of TM stiffness with other studies in human eyes 

Data Source Methods TM Modulus (kPa) 

Our data (normal) Inverse FEM 62 ± 13a 

Our data (glaucoma) Inverse FEM 84.5 ± 8a 

Our data (normal) AFM 

(compression) 

1.64 ± 0.21a 

Our data (glaucoma) AFM 

(compression) 

2.47 ± 1.52a 

Johnson et al. (normal) [65]  Beam-bending 

model 

128n 

Last et al. (normal) [30] AFM 

(compression) 

4 ± 2.2a 

Last et al. (glaucoma) [30] AFM 

(compression) 

80.8 ± 32.5a 

Camras et al. (normal) [52, 59] Uniaxial test 

(tensile) 

51500 ± 13600b 

Camras et al. (glaucoma) [53] Uniaxial test 

(tensile) 

12500 ± 1400b 

a: mean ± SD; b: geometric mean ± geometric SE; n: not specified 

Second, a potential confounding factor arises in the OCT experiment because the 

pressure at the OCT scan location was not precisely known. We attempted to account for 

this (see Methods) and used our best estimate of the local pressure for FEM simulations. 

Interestingly, in a few specimens we observed SC collapse at the free (non-cannulated) 

end of SC (Figure A.10). This could be due to anatomic factors, or curvature of SC out 

of the imaging plane. Another interpretation is that SC was acting like a Starling resistor, 

a well-known phenomenon in which the exit pressure in a collapsible tube adjusts itself to 

match the surrounding bath pressure while luminal pressure is relatively spatially 

uniform, with a steep pressure gradient in the immediate vicinity of the outlet. If this 

were to occur, it would make the calculation of the pressure at the scan location very 

difficult and our estimated pressure at the scan location, as described above, would be 
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incorrect. Because we did not consistently see collapse at the distal end of SC, we 

reasoned that in most, perhaps all, cases, it was not appropriate to treat SC as a Starling 

resistor. Ideally, future studies would have a better way of determining SC luminal 

pressure at the scan location, although this would be very technically challenging.  

Third, although the neo-Hookean material model that we used is not ideal at large 

strains [48], it is possible to use it for hyperelastic materials in the initial linear range, 

where strains are less than 20%. In our simulations, the maximum first principal strain in 

the deformed configuration was usually less than 20%, justifying the use of the neo-

Hookean model. 

Fourth, in most OCT images, transluminal structures (TLS) can be observed spanning 

SC [129]. TLS include endothelial lining (ET) and septa. It has been suggested that these 

structures attach to the TM and corneoscleral wall and undergo motion [104, 130-136]. 

To better address the above issue, a 3D model containing TLS was built to investigate the 

effect of TLS on estimated TM stiffness (see Appendix A for more details). When 

compared TM stiffness between the 2D and 3D model, there was not a major difference. 

Thus, we decided not to pursue the 3D model because it was very time-consuming to 

construct such models. 

Fifth, we found large disagreements between simulated and experimental SC contours 

for some of the samples. One possible reason for such deviations might be tissue 

movement induced by factors other than the applied luminal SC pressure. Factors like 

loose attachment to the petri dish, cannula movement and/or changes of tissue curvature 

resulting from segment straightening in response to SC pressure changes might have 
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induced a small amount of tissue translation or rotation, leading to errors in the OCT 

images. Further investigation of such types of displacement errors is warranted. 

Finally, as mentioned above, there was uncertainty in AFM measurement locations 

due to different focus planes of the cantilever and tissue when the sample was observed 

from the bottom. We estimated that the distance between cantilever tip before and after 

the refocusing was about 20 µm. Although the deviation between the desired and actual 

measurement locations is much less than width of defined the TM band, it may still cause 

small variations in the resultant TM stiffness. These deviations suggest the method of 

defining the start location of the AFM measurements may need to be improved. 

There are two potential issues with use of post mortem human eyes. The first is the 

freshness of the eye. In our study, the time lag from donation to OCT and AFM 

measurements could be as long as 15 days, although for much of this time the eyes were 

being perfused in anterior segment organ culture. The relation between freshness of 

outflow tissue and its mechanical properties has not been fully characterized, although 

outflow tissues are well preserved for several weeks in organ culture as assessed by TM 

ultrastructure and glycosaminoglycan profiles [112]. The second issue is specific to eyes 

with a reported history of glaucoma. We could not obtain full medical histories for such 

eyes. It has been reported that there is a clear need to improve access to well-documented 

human eye tissue [137]. For example, there may be eyes with normal-tension glaucoma 

which simply appear with the diagnosis of ‘glaucoma’ on medical records. Such patients 

have normal IOPs and thus ostensibly normal TM function, and thus should not be 

included in the glaucoma group in our study.  
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In conclusion, our data suggest that differences in perfusion outflow facility in both 

normal and glaucomatous human eyes are correlated with differences in TM stiffness. 

These data provide a motivation for initiating further studies to identify mechanisms 

responsible for varying TM stiffness, particularly the altered stiffness in glaucomatous 

eyes. 
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CHAPTER 3. THE RELATIONSHIPS BETWEEN TM 

STIFFNESS AND OUTFLOW RESISTANCE IN MICE 

This chapter forms part of a submitted journal paper to Scientific Reports: Wang K, Li 

G, Read AT, Navarro I, Mitra AK, Stamer WD, Sulchek T, Ethier CR. The relationship 

between outflow resistance and trabecular meshwork stiffness in mice.  

3.1 Abstract 

Purpose: There are naturally-occurring differences in intraocular pressure (IOP) and 

outflow facility among genetically distinct mouse strains (e.g. C57BL/6J vs. CBA/J). The 

purpose of this study is to test the hypothesis that this inherent variation in outflow 

facility may be related to inherent differences in trabecular meshwork (TM) stiffness in 

those two wild-type mouse stains. 

Methods: Using wild-type C57BL/6J (n=18) and CBA/J (n=10) mice, valid outflow 

facilities (C) were measured in 22/28 mice by ocular perfusion. TM stiffness (E) was 

measured using a cryosection-based atomic force microscopy technique as previously 

described.  

Results: C was slightly lower in CBA/J vs. C57BL/6J mice (mean±SD: 6.17±2.91 vs. 

6.28±2.18 nl/min/mmHg) while TM was stiffer in CBA/J mice (3.09±3.55 kPa) than in 

C57BL/6J mice (2.20±1.12 kPa). However, none of the above differences were 

statistically significant. Importantly, TM stiffness was significantly correlated with 

outflow resistance (1/C; R2=0.35, P=0.006).   
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Conclusions: Aqueous outflow resistance, which shows natural variation across wild-

type mouse strains, is correlated with TM stiffness in two strains. This suggests that TM 

stiffness is intimately involved in establishing outflow resistance, motivating further 

studies to investigate factors underlying TM biomechanical property regulation. Those 

factors may play a role in the pathophysiology of primary open-angle glaucoma (POAG). 

3.2 Introduction 

Increased intraocular pressure (IOP) is present in many cases of glaucoma and is 

considered to be the most significant risk factor for glaucoma, although other risk factors 

such as age, race, family history and comorbidity are also important. The cause of 

elevated IOP in glaucoma patients is increased resistance (decreased outflow facility) to 

aqueous humor outflow. However, the mechanisms underlying this increased outflow 

resistance are still not well understood.  

Previous studies have suggested that the bulk of outflow resistance is generated near 

the inner wall of Schlemm’s canal (SC), including the juxtacanalicular connective tissue 

(JCT) layer of the trabecular meshwork (TM) [2, 3]. In addition, the stiffness of TM, as 

measured on the JCT side, was dramatically increased in glaucomatous eyes compared to 

that in normal eyes [30]. This motivated us to further study the correlation between 

mechanical properties of the TM and outflow resistance.  

There are a number of drawbacks to using human eyes for such studies. Most notably, 

it is near-impossible to obtain untreated glaucomatous human eyes. Thus, it is possible 

that the stiffness difference we measured may not be directly related to the pathogenesis 

of glaucoma and instead could be caused by glaucoma medications. Thus, it is important 
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to repeat TM stiffness measurement in eyes that have not been exposed to glaucoma 

medications and whose pressure history is known. 

Mice are widely-used animal models for studying aqueous humor outflow, in part 

because they are convenient to use, and in part, because TM anatomy and conventional 

outflow pathway function in mice are generally similar to those in human eyes [7]. For 

example, outflow facility in mice responds to compounds that similarly affect outflow 

facility in human eyes [11]. Although mice do not tend to spontaneously develop POAG 

themselves as humans do, genetically distinct mouse strains have different IOPs, and 

different conventional outflow facilities [138]. A previous study has shown that there was 

a correlation between IOP and outflow facility across three mouse strains (CBA/J, 

C57BL/6J, and BALB/CJ), with 70% of the variation in IOP being attributable to 

variation in outflow resistance (1/C) [97]. Thus, using different strains of mice may 

provide one way to study the relation of TM stiffness to IOP and outflow facility.  

Given these facts, we were motivated to perform studies using those same mouse 

strains to further investigate the correlation between TM stiffness and outflow resistance. 

If those two parameters were closely related, it would open new paradigms for IOP 

control and/or provide new insights to glaucoma pathophysiology. 

3.3 Methods 

All experiments were done in compliance with the ARVO Statement for the Use of 

Animals in Ophthalmic and Vision Research. All mice were purchased from the Jackson 

Laboratory. 
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We chose strains that had previously been characterized and which covered a range of 

IOPs and facilities, namely CBA/J, C57BL/6J and BALB/CJ mice. Unfortunately, it 

proved impossible to measure TM stiffness in BALB/CJ mice, since our technique 

required the presence of pigmented tissues to identify the location of the TM during 

stiffness measurements (see below). Thus, a total of 10 CBA/J and 18 C57BL/6J wild-

type mice were used in this study. For each eye, outflow facility was measured ex vivo 

using the iPerfusion system [139], after which TM stiffness was measured using our 

previously developed cryosection-based AFM technique [140].  

3.3.1 Ex vivo Mouse Eye Perfusion 

Mice were sacrificed using CO2. Eyes were enucleated using forceps within 5 minutes 

of death and stored in Dulbecco’s phosphate buffered saline (DPBS, Mediatech Inc, 

Manassas, VA) at room temperature until use (<10 minutes). Eye perfusion was 

performed using the previously described iPerfusion system [139]. Briefly, eyes were 

cannulated with a glass micropipette (outer diameter 70-75 µm, Clunbury Scientific LLC, 

Bloomfield Hills, MI) under a stereomicroscope using a micromanipulator. LabVIEW 

software controlling the hardware automatically varied the pressure by adjusting the 

height of a reservoir connected to the micropipette. Both IOP and flow were recorded in 

real time. Eyes were perfused at sequential pressures of 4.5, 6, 7.5, 9, 10.5, 12, 13.5, 15, 

16.5 and 18 mmHg. Typically, 10 minutes was required at each pressure step to obtain 6 

minutes of stable perfusion flow data. During perfusion, the entire eye was submerged in 

a PBS bath maintained at a temperature of 35 °C. Eyes were perfused with DPBS plus 

5.5mM glucose. 
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3.3.2 Outflow Facility Analysis 

We calculated the pressure-dependent outflow facility by fitting pressure-flow rate 

data to the following empirical equation: 

                                                  𝑸(𝑷) = 𝑪 (
𝑷

𝑷𝒓
)

𝜷

𝑷                                                           (5) 

where 𝑸 is flow rate (nl/min) measured by the flow sensor, 𝑪 is outflow facility (nl/min · 

mmHg),  𝜷 is a parameter characterizing the nonlinearity of the pressure-flow 

relationship, 𝑷 is IOP, and 𝑷𝒓 is a reference pressure, taken as 8 mmHg. Using equation 

5, values for 𝑪 and 𝜷 are obtained as fitting outcomes. The reported outflow resistance is 

the reciprocal of facility.  

3.3.3 AFM Measurement of TM Stiffness using Cryosections 

After perfusion, TM stiffnesses were measured using a previously developed AFM 

technique on cryosections [140]. Briefly, immediately after the glass micropipette was 

removed from the anterior chamber, a small dab of glue (Superglue, Loctite, Germany) 

was placed onto the cornea to seal the resulting hole. This ensured that IOP was 

maintained at a value close to the last perfusion value, so that an open SC lumen was 

more likely to be found, aiding in TM localization (Figure 3.1). Eyes coated with optimal 

cutting temperature compound (O.C.T.; Tissue-Tek) were then frozen by immersion in 2-

methylbutane (Sigma-Aldrich, St. Louis, MI) cooled by liquid nitrogen [141, 142]. For 

each eye, a few 10 µm thick sagittal cryosections from 3 different quadrants were cut on 

a Microm Cryostar NX70 cryostat (Dreieich, Germany), collected on adhesive slides 

(Plus gold slide, Electron Microscopy Sciences, Hatfield, PA) and stored in ice-cold PBS 

for AFM analysis (Figure 3.1).  
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TM stiffnesses were measured following the same protocol we used previously. 

Specifically, for each cryosection, the TM was first localized as the region between the 

pigmented ciliary body and the inner wall endothelium of SC (Figure 3.1). Multiple 

locations in the TM region (typically 3-9) were probed by the cantilever and three 

repeated measurements were conducted at each location. The average from the three 

measurements was taken as the TM stiffness at that location. TM stiffnesses from all 

locations within a cryosection were then averaged to obtain the TM stiffness of that 

cryosection. We typically made AFM measurements on 9 cryosections (collected from 3 

different quadrants) from each individual eye, since TM stiffness may be location-

dependent. Finally, the mean stiffness of all cryosections was taken as the TM stiffness of 

the eye.  
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Figure 3.1: Schematic diagram of the cryosection-based AFM technique. Sagittal 

cryosections were cut from a frozen eye and mounted to an adhesive glass slide 

without glue. The bottom figure shows the limbal region of a representative 

cryosection observed from the AFM bottom camera (SC=Schlemm’s canal). 

Numbers within the TM region indicate individual locations indented by the AFM 

probe. Scale bar: 50 µm. Section thickness: 10 µm. 

3.4 Statistical Analysis 

For each mouse, only the data from the OD eye was used to avoid non-independence 

effects between the two eyes from one animal [143]. The exception was in animals for 

which measurements on the right eye yielded invalid facility data due to technical issues, 

in which case the left eye was used. The Wilcoxon rank-sum test was used to compare 

differences outflow facility and TM stiffness between groups (C57BL/6J vs. CBA/J wild-

type mice). The above comparisons were also performed where the data of a mouse was 

taken as the mean values from the two eyes (See details in Appendix B), using the same 



www.manaraa.com

 60 

statistical methods. Linear regression was used to test the correlation between outflow 

resistance and TM stiffness. The significance threshold was defined to be 0.05 for all 

statistical tests. 

3.5 Results 

The facility of C57BL/6J mice was slightly higher than that of CBA/J mice (6.28 ± 

2.18 vs. 6.17 ± 2.91 nl/min mmHg; p = 0.692, Figure 3.2). This trend is consistent with a 

previous study [97] but the difference we observed was not statistically significant. 

Similarly, average TM stiffness in C57BL/6J mice was less than in CBA/J mice, but this 

difference was also not significantly different (2.20 ± 1.12 vs. 3.08 ± 3.55 kPa; p=0.719, 

Figure 3.2).  

  

Figure 3.2: Facility (C; left) and TM stiffness (right) for two mouse strains. For each 

box, the central line represents the median, and the edges of the box are the 25th 

and 75th percentiles, and whiskers extend to the most extreme data points not 

considered outliers. Each dot represents the data from one eye per mouse, as 

described in more detail in the Statistical Analysis section. Due to technical issues, 

not all measurements in all mice were successful; number of eyes shown for facility 

plot are n=12 for C57BL/6J and n=10 for CBA/J. For the stiffness plot, the 

respective values are n=18 and n=10. NS: Not Significant. 

Surprisingly, we observed a significant correlation between outflow resistance (1/C) 

and TM stiffness when pooling data from two strains, although the correlations for each 
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strain individually were not significant (Figure 3.3). This indicates that there is an 

inherent relationship between the mechanical properties of TM and outflow resistance in 

these mice, independent of strain.  

 

Figure 3.3: Cross-plot between outflow resistance and TM stiffness, with each data 

point representing one mouse. The black solid line and equation represent the linear 

regression of the pooled data. The gray-shaded region shows 95% confidence 

bounds for the regression. For each mouse, only the data from the OD eye was used, 

except in cases where the OD eye yielded invalid facility data due to technical issues, 

in which case data from the OS eye was used. Only mice where both outflow 

resistance and TM stiffness were measured in the same eyes were included. Number 

of data points: n=12 for C57BL/6J, n=8 for CBA/J.   
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3.6 Discussion 

The major finding of this work is that there is a significant correlation between 

aqueous outflow resistance and TM stiffness across two strains of pigmented wild-type 

mice. This suggests that an intrinsic link between the mechanical properties of the TM 

and aqueous humor outflow dynamics exists. This finding is consistent with evidence that 

Rho-associated protein kinase (ROCK) inhibitors, known to reduce TM actomyosin 

contractile tone, decrease outflow resistance. Interestingly, we have also observed a 

statistically significant inverse correlation between outflow facility and TM stiffness in a 

previous study using human tissue from both normal and glaucomatous eyes [144], 

consistent with the above results. This further suggests commonalities between humans 

and mice in the TM stiffness-outflow resistance relationship.  

We also found that neither facility nor TM stiffness showed significant differences 

between C57BL/6J and CBA/J mice. From the boxplot in Figure 3.2, it appears that 

several data points were outliers, since they were outside the whiskers. We investigated 

this further, defining outliers as values lying more than three scaled median absolute 

deviations (MAD) away from the median. In facility comparisons, we detected 2 outliers 

for CBA/J mice, while in TM stiffness comparisons, we detected 2 and 1 outliers for 

C57BL/6J and CBA/J mice, respectively. However, conclusions about statistical 

significance were unchanged for all statistical comparisons when tests were rerun with 

outliers removed.  

In view of the lack of statistical significance, we asked how many samples would have 

been needed to observe statistically significant results. Power analyses performed with 
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G*Power software (α = 0.05, power = 0.8) using the means and standard deviations in 

Section 3.5 indicated that, in order to show statistically significant inter-strain differences 

in outflow facility and TM stiffness, more than 6000 (effect size: 0.043) and 100 (effect 

size: 0.334) animals for each group would be needed, respectively. Thus, we hypothesize 

that it is unlikely that the facility and TM stiffness are different between the two strains. 

This is inconsistent with the results of a previous study, which detected a significant 

difference in outflow facility between the same two strains [97]. Despite the same trend 

of facility difference, the actual values from their study were about twofold higher than 

ours, probably due to different ocular perfusion methodologies and fitting of the flow-

pressure curve.  

This study has several limitations. First, we obtained the TM stiffness by performing 

measurements on nine distinct locations for each eye. Although those locations come 

from three quadrants, the average of their TM stiffness may not represent the properties 

of the entire TM, while by definition, the outflow resistance is a measurement of outflow 

characteristics of the entire TM. Additionally, outflow resistance can be affected by other 

factors such as the cross-sectional area of the outflow tissue and length of the TM from 

anterior chamber to SC. All the above factors could potentially add variance to the 

correlation. Another limitation is that the effects of the freeze-thaw procedure, inherent in 

making measurements on thawed cryosections, was not evaluated on TM mechanical 

properties. However, no significant ice crystals were observed on the cryosections and 

previous studies have concluded that the mechanical properties of cryopreserved human 

arteries and sclera were similar to that obtained in fresh samples [145, 146]. Therefore, 

we expect the effects of freezing on TM mechanical behavior to be small.  
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CHAPTER 4. THE EFFECT OF DEXAMETHASONE ON TM 

STIFFNESS IN MICE 

This chapter, together with Chapter 3, forms the basis of a submitted journal paper: Wang 

K, Li G, Read AT, Navarro I, Mitra AK, Stamer WD, Sulchek T, Ethier CR. The 

relationship between outflow resistance and trabecular meshwork stiffness in mice.  

4.1 Abstract 

Purpose: Dexamethasone (DEX) treatment can increase intraocular pressure (IOP) 

which may lead to the development of steroid-induced glaucoma. It has been reported 

that the stiffnesses of cultured trabecular meshwork (TM) cells and of their extracellular 

matrix were elevated when treated with DEX. However, whether the increased TM 

stiffness contributes to altered IOP homeostasis after DEX treatment remains unknown. 

Thus, we studied how IOP, outflow facility (C), and TM stiffness changed in DEX-

treated mice. 

Methods: 41 C57BL/6J mice received DEX (n=25) or vehicle (n=16) delivered by 

custom nano-sized polymers incorporating either DEX or vehicle and injected into the 

subconjunctival space. IOP was recorded approximately twice a week using tonometry. 

Valid outflow facilities (C) were measured by ocular perfusion. TM stiffness (E) was 

measured using a cryosection-based atomic force microscopy technique as previously 

described.  

Results: All DEX mice had significantly elevated IOP vs. control mice on the day of 

sacrifice (27.1 ± 2.7 vs 20.5 ± 3.2 mmHg; P<0.001). C of DEX mice was lower than 
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control mice (3.05±1.47 vs. 4.09±1.71 nl/min/mmHg; P=0.192). The TM in DEX-treated 

mice was stiffer than that in vehicle-treated mice, but this difference was not statistically 

significant (2.38±1.31 vs. 1.99±0.91 kPa; P=0.357). Importantly, TM stiffness was 

significantly correlated with outflow resistance (1/C) (R2=0.41, P=0.002). 

Conclusions: DEX treatment caused a significant elevation in IOP, but only a slight 

increase in outflow resistance and TM stiffness on average. The significant correlation 

between TM stiffness and outflow resistance suggests that about 40% of the change in 

outflow resistance is associated with changed TM stiffness. This motivates further studies 

to investigate molecular or genetic factors contributing to the mechanical property 

changes we observed in the outflow tissue. 

4.2 Introduction 

Previous studies have indicated that trabecular meshwork (TM) stiffness may be 

related to aqueous humor outflow resistance [30, 52, 59, 144]. Specifically, using atomic 

force microscopy (AFM), TM stiffness was found to be dramatically increased in human 

glaucomatous eyes compared to that in normal eyes, which may be associated with 

dysregulation of the extracellular matrix (ECM) observed in glaucoma [30]. Further, in 

normal and glaucomatous human eyes, we have recently reported an association between 

facility and TM stiffness as deduced by OCT imaging and numerical modeling [144]. In 

addition, increased stiffness of TM cells and TM ECM has been reported after exposure 

to the glucocorticoid dexamethasone (DEX) in cultured human TM cells or in rabbit eyes 

[60]. Clinically, glucocorticoid exposure can lead to steroid-induced glaucoma (SIG) that 
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has commonalities with primary open-angle glaucoma, and thus an understanding of TM 

changes in SIG may shed light on TM dysfunction in glaucoma in general.  

DEX-treated animals have been used in several previous studies to examine the effect 

of glucocorticoids on IOP, outflow facility (C), or TM stiffness. Raghunathan et al. 

reported that 3 weeks of topically-administered DEX resulted in a 3.5-fold increase in 

TM stiffness in rabbit eyes [60]. However, no statically significant changes in IOP were 

observed between the DEX-treated eyes and control eyes. Whitlock et al. observed a 

significant IOP increase after systemic DEX treatment using minipump implantation in 

mice [61] which can sustain DEX delivery for up to 30 days. Similarly, Overby et al. 

[147] demonstrated that DEX-induced ocular hypertension (OHT) in mice mimicked 

hallmarks of human SIG, and that reduced outflow facility was correlated with newly 

formed ECM in the TM (e.g. increased fibrillar material, basement membrane material, 

etc.). However, systemic delivery of DEX is undesirable and thus alternative DEX 

delivery methods are preferred. Agrahari et al. [148] have recently developed a method to 

deliver DEX to human TM cells using DEX-encapsulated pentablock copolymer-based 

nanoparticles (DEX-PB-NPs). They showed that DEX was released continuously from 

the PB-NPs over 3 months, with 50% released within the first 6 weeks. This provides the 

possibility to deliver DEX locally by injecting the DEX-PB-NPs into or adjacent to 

mouse eyes, as a mouse model to study the pathophysiology of steroid-induced OHT.  

In view of the above, we were motivated to use mice to further investigate the 

correlation between TM stiffness and outflow resistance. If those two parameters were 

closely related, it would open new paradigms for IOP control and possibly provide new 

insights into the pathophysiology of POAG and SIG.  
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4.3 Methods 

4.3.1 Animals and Overview of Experimental Design 

All procedures on living mice were conducted in compliance with the ARVO 

Statement for the Use of Animals in Ophthalmic and Vision Research. All mice were 

purchased from the Jackson Laboratory. 

To study changes in TM stiffness induced by DEX treatment, 41 C57BL/6J mice 

(separated into five cohorts; 25 DEX-treated and 16 vehicle-treated mice; Table 4.1) 

were used. IOP was recorded before and during DEX treatment. Both outflow facility and 

TM stiffness were measured in post mortem eyes as described above. All the 

DEX/vehicle treatments, and IOP and facility measurements for the DEX treatment study 

were done in the Stamer lab. 

Table 4.1: Number of mice, number of valid measurements (i.e. IOP, facility, and 

TM stiffness) and treated eyes in each cohort for DEX study. 

Cohort 
DEX-treated 

mice  

Vehicle-treated 

mice  
IOP C E 

Treated 

eye 

1 6 3 9 0 9 
OD 

2 4 0 4 0 4 

3 6 5 11 5 11 

OU 
4 5 4 9 9 9 

5 4 4 8 7 8 

Total 25 16 41 21 41 
OD: right eye; OU: both eyes. IOP: intraocular pressure; C: facility; E: TM stiffness.  

4.3.2 DEX Treatment 

DEX-PB-NPs were formulated by an oil-in-water single emulsion solvent evaporation 

method as described previously [148] and stored at -20°C until further use. The particle 

size was in the range of 109 ± 3.77 nm [148]. Control PB-NPs (Con-PB-NPs) were 
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prepared with the same approach except that no DEX was added. Nanoparticles were 

loaded such that 1 mg of DEX-PB-NPs contained 23 µg of DEX, while 1mg of Con-PB-

NPs contained no DEX. 

On a typical injection day, DEX-PB-NPs or Con-PB-NPs were dissolved in phosphate 

buffered saline (PBS) to obtain a DEX-PB-NPs solution or Con-PB-NPs solution at a 

concentration of 1 mg/20 µl (1mg DEX-PB-NPs or 1mg Con-PB-NPs in 20 µl PBS). For 

each injection, 20 µl of DEX-PB-NPs solution or Con-PB-NPs solution was injected into 

the subconjunctival/periocular space using 30-gauge needles in DEX and control mice, 

respectively. The injection location was consistent between DEX-treated and control 

eyes. Typically, three injections at days 0, 7 and 14 were administered. Importantly, in 

the first two cohorts of mice, DEX or vehicle was delivered into only the right eyes on 

days 0 and 14, while the left eyes served as a control. However, we observed a bilateral 

IOP increase in these animals. Thus, for cohorts 3-5, injections were performed 

bilaterally, with a subset of mice acting as controls (bilateral Con-PB-NP injection) and 

the remaining mice acting as experimental animals (bilateral DEX-PB-NP injection). 

Details of mouse numbers in each cohort and the injected eyes are listed in Table 4.1. A 

previous in vitro study showed that DEX release from the particles typically lasted for 3 

months, with about 20% of DEX released in the first 2 days [148].  

4.3.3 IOP Measurements 

IOPs were recorded non-invasively using a commercially available tonometer 

(TonoLab, TV02, Icare, Finland) in anaesthetized mice. Briefly, mice were anesthetized 

with ketamine (60 mg/kg) and xylazine (6 mg/kg). IOP was measured just as the mice 
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stopped moving (light sleep). Each recorded IOP was the average of six measurements 

from the same eye. IOPs were obtained right before each injection and on the day when 

mice were euthanized. All IOP measurements were performed between 10 am to 1 pm. 

We were concerned that the DEX treatment could possibly have affected corneal 

stiffness, leading to an artifactual “change” in measured IOP. Thus, the tonometer was 

calibrated in six eyes of three mice (one control mouse and two DEX-treated mice). 

Calibration was performed on live, anesthetized animals secured on a platform. The 

anterior chamber was cannulated with a glass needle (opening ~70 µm × 80 µm) filled 

with filtered D-glucose in phosphate-buffered saline (DBG, 5.5mM) connected to a 

PowerLab system (ML870/P PowerLab 8/30, ADInstruments, Colorado Springs, 

Colorado, USA) and then an adjustable height reservoir containing filtered ddH2O.  IOP 

was set to either 10, 15, 20, 25, or 30 mmHg by adjusting reservoir height, and confirmed 

using the PowerLab system zeroed to tear film, with the needle tip placed at the same 

level as its eventual position inside the eye, before the micropipette was inserted in to the 

anterior chamber. Tonometer measurements were performed under a microscope to 

ensure that probe rebounded against the central cornea perpendicularly. Five readings 

from the tonometer were recorded for each pressure level. For each eye, a linear 

correlation (Equation 6) between the tonometer-measured pressure (IOPtono) and the 

true IOP (IOPtrue) was determined from:   

                                                     𝑰𝑶𝑷𝒕𝒐𝒏𝒐 = 𝒂 · 𝑰𝑶𝑷𝒕𝒓𝒖𝒆 + 𝒃                                (6) 

with slope 𝒂, intercept 𝒃 and R2 given in Table 4.2. Since there was no significant 

difference in the parameters of the linear regression between treatments (p=0.70, 

ANCOVA), all data were pooled together to yield a single regression (Figure 4.1). We 
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conclude that DEX treatment did not affect the accuracy of the IOP measurements using 

the TonoLab tonometer. All IOP value reported in this manuscript were IOPtrue, i.e. 

IOPs corrected by a single calibration curve as follows (Equation 7; note that IOPs are 

expressed in mmHg in this equation): 

                                                        𝑰𝑶𝑷𝒕𝒓𝒖𝒆 =
𝑰𝑶𝑷𝒕𝒐𝒏𝒐 +𝟎.𝟎𝟗𝟔

𝟏.𝟎𝟎𝟐
                                        (7) 

 

Figure 4.1: Correlation between IOP measured by tonometer (IOPtono) and set by 

reservoir (IOPtrue) in mouse eyes. Each data point refers to a single eye. Grey is for 

DEX-treated eyes and white is for vehicle-treated eyes. The line is the best fit using 

linear least squares regression. The gray-shaded region shows 95% confidence 

bounds to the regression. 

Table 4.2: Results of the tonometer calibration. a: slope; b: intercept and R: 

correlation coefficient. 

Groups Mouse Eye a b (mmHg) R2 

Vehicle 1 
OD 0.9967 -0.0333 0.9976 

OS 1.0267 -0.5667 0.9997 

DEX 

2 
OD 1.0433 -0.4000 0.9921 

OS 0.9233 1.2333 0.9951 

3 
OD 1.0224 1.1524 0.9980 

OS 1.001 0.3429 0.9985 
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4.3.4 Outflow Facility Measurement 

Both OD and OS eyes were enucleated after mice were sacrificed and outflow facility 

was measured ex vivo using the standard iPerfusion system [139]. On a typical 

experimental day, 2-3 pairs of eyes were perfused, with each pair of eyes being perfused 

simultaneously to eliminate any errors caused by post mortem time differences. The 

detailed perfusion procedures can be found in Chapter 3, Section 3.3.1-3.3.2. 

4.3.5 TM Stiffness Measurement 

After facility measurement, the eyes were snap-frozen in the Stamer lab and sent to 

Atlanta for TM stiffness measurement. The detailed procedures can be found in Chapter 

3, Section 3.3.3. 

4.3.6 Statistical Analysis 

For each mouse, only the data from the OD eye was used to avoid non-independence 

effects between the two eyes from one animal. The exception was in animals for which 

measurements on the right eye yielded invalid facility data due to technical issues, in 

which case the left eye was used. The Wilcoxon rank-sum test was used to compare 

differences in IOP, outflow facility and TM stiffness between groups (DEX-treated vs. 

Vehicle-treated mice). For completeness, and for consistency with other studies, we also 

repeated our analyses by averaging data from both eyes of each mouse, using the same 

statistical methods (See details in Appendix B). Linear regression was used to test the 

correlation between IOP and outflow resistance, and the correlation between outflow 

resistance and TM stiffness. Further, ANCOVA was used to investigate whether other 
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factors (e.g. treatment conditions, cohorts) were significant contributors to the changes in 

outflow resistance (R; version 3.4.1; R Core Team). In those models, the TM stiffness 

was the independent variable and outflow resistance was the dependent variable. Other 

factors were treated as covariates. The significance threshold was defined to be 0.05 for 

all statistical tests.  

4.4 Results 

Local DEX delivery resulted in significant IOP elevation compared to vehicle-treated 

animals on day 14 and on the day when mice were sacrificed (n: 25 DEX and 16 control 

mice; Figure 4.2). IOP remained near the baseline level (day 0) in control mice (Figure 

4.2). On the day mice were sacrificed (day 20-40), IOP was 27.12±2.72 mmHg (mean ± 

SD) in DEX-treated mice and 20.53±3.16 mmHg in vehicle-treated mice (p<0.001, 

Figure 4.3A). Further, all DEX-treated mice had increased IOP on the day of sacrifice 

compared to that on day 0. 
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Figure 4.2: IOP as a function of time for DEX-treated (grey) and vehicle-treated 

(white) mice averaged over five cohorts. For cohort 1 and 2, DEX or vehicle were 

injected on day 0 and 7. For cohort 3-5, injections were performed on day 0, 7 and 

14. All IOPs were measured immediately before injections. Bars are standard 

deviation. *p<0.05, ***p<0.001. p-values were Benjamini-Hochberg corrected. 

The mean facility of DEX mice was lower than that of control mice (Figure 4.3B), but 

the difference did not reach statistical significance (DEX: 3.05 ± 1.47 nl/min mmHg; 

Control: 4.09 ± 1.71 nl/min mmHg; p= 0.192). The IOP measured before death tended to 

be negatively correlated with 1/C in the same eye. However, the low R2 indicated that 

only about 15% of the IOP elevation was attributable to the variation in facility, and the 

relationship was not statistically significant (p=0.0788; R2: 0.154; Figure 4.3C).  

The TM was stiffer in some of the DEX mice, although not all (Figure 4.4). The 

average TM stiffness in DEX-treated mice was about 20% higher than that in vehicle-

treated mice, but this difference did not reach statistical significance (2.38±1.31 vs. 

1.99±0.91 kPa; p=0.357). Interestingly, despite the modest differences in facility and TM 

stiffness between the DEX-treated and control mice, there was a positive correlation 

between outflow resistance and TM stiffness for pooled data which reached statistical 
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significance (p=0.002; R2 = 0.41; Figure 4.5). Mouse cohort, as a covariant, did not have 

a significant effect on the above correlation (ANCOVA, p=0.54). Further, the same 

correlation within each group was also statistically significant (DEX group: R2=0.483, 

p=0.0176; Control group: R2=0.421, p=0.0425, Figure 4.6). ANCOVA showed that 

neither the slopes nor the intercepts were significantly different between the two 

correlations (p for slope=0.78; p for intercept=0.09, Figure 4.6), justifying performing a 

single correlation between resistance and TM stiffness using pooled data in Figure 4.5. 
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Figure 4.3: DEX treatment affected IOP and facility. (A) Boxplot of IOP for DEX-

treated (n=25) and vehicle-treated mice (n=16).  (B) Boxplot of facility (C) for DEX-

treated (n=11) and vehicle-treated mice (n=10). For each box, the central mark is 

the median, the edges of the box are the 25th and 75th percentiles, and whiskers 

extend to the most extreme data points not considered outliers. Each dot represents 

the data from one eye. (C) IOP measured on the day mice were sacrificed plotted as 

a function of resistance for DEX-treated (grey dots, n=11) and vehicle-treated (white 

dots, n=10) mice. The black solid line is the best fit using linear least squares 

regression. The gray-shaded region shows 95% confidence bounds for the 

regression. ***p-value<0.001. NS.: Not Significant. Data in panels B and C are from 

cohorts 3-5. 
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Figure 4.4: Boxplot of TM stiffness for DEX-treated (n=25) and vehicle-treated mice 

(n=16). For each box, the central mark is the median, the edges of the box are the 

25th and 75th percentiles, and whiskers extend to the most extreme data points not 

considered outliers. Each dot represents the data from one eye. NS: Not Significant. 

 

Figure 4.5: Cross-plot between outflow resistance and TM stiffness for DEX-treated 

(n=11) and vehicle-treated mice (n=10). The blue line and equation represent the 

linear regression of the pooled data. The gray-shaded region shows 95% confidence 

bounds for the regression. Different shapes represent different cohorts. 



www.manaraa.com

 77 

 

Figure 4.6: Cross-plot between outflow resistance and TM stiffness within each 

group of mice, with DEX mice shown in red (n=11) and control mice shown in green 

(n=10). The gray-shaded regions show 95% confidence bounds for the regressions. 

4.5 Discussion 

The major finding of this work is that there is a significant correlation between 

aqueous outflow resistance and TM stiffness in DEX-treated and control mice. The 

mechanism(s) behind the trend towards higher TM stiffness in DEX-treated eyes remain 

unclear. It is important to recall that we interrogated the stiffness of histologic 10-micron 

sections, so that most cells within the section had likely been cut during section 

preparation. It is difficult to unambiguously assign measured stiffness values to a specific 

TM component in our experiments, but in view of inevitable cell damage sustained 

during the sample preparation technique, it seems probable that our measurements 

primarily reflected ECM stiffness. This supposition is consistent with the observations of 
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Overby et al., who found that systemic treatment with DEX led to increased ECM in the 

JCT, including fibrillar material and basement membrane material under the inner wall of 

Schlemm’s canal [149]. Of course, in situ, overall TM stiffness depends on TM cells, the 

ECM and the interaction between the two [39-43, 150]. It is important to recall that there 

is a constant mechanobiologic interplay between cells and ECM in soft tissues, so that, 

for example, TM cell tone can induce ECM reorganization/deposition which may in turn 

affect TM stiffness [42, 44, 45]. Thus, the variations in TM stiffness that we observe 

could have arisen due to cellular-level variations that led to matrix alteration, due to 

primary variations in ECM composition or density, or both. Better understanding these 

mechanistic details will be very important for developing novel therapies that act on TM 

stiffness to modulate IOP.  

Within some of the cryosections with relatively large TM regions, it was possible to 

reliably make measurements closer to the SC (“Outer” TM, likely involving the JCT and 

part of the corneoscleral TM) and further from SC (“Inner” TM, likely including uveal 

meshwork and part of the corneoscleral TM, Figure 4.7). It was consistently observed 

that the measurements in the outer TM region were stiffer than those in the inner region 

in both DEX and vehicle-treated mice (Figure 4.8), with the difference reaching statistical 

significance in DEX mice (P<0.001; Paired Wilcoxon test; N=12). This emphasizes the 

heterogeneity of the TM and is consistent with the hypothesis we proposed in Section 2.5, 

where we suggested that any stiffness differences in HF vs. LF regions of TM may occur 

closer to the inner wall of SC. 



www.manaraa.com

 79 

 

Figure 4.7: A representative cryosection with a relatively large TM. Numbers within 

the TM region indicate individual locations indented by the AFM probe. “Outer” 

TM and “inner” TM were labeled. Scale bar: 50 µm. Section thickness: 10 µm. 

 

Figure 4.8: Regional heterogeneity of TM in DEX- (N=12) or vehicle- (N=5) treated 

mice. The outer TM (orange bar) tended to be stiffer than the inner TM (blue bar) 

in both groups (DEX mice: mean±SD=2.26±1.76 kPa for outer TM and 1.14±0.82 

kPa for inner TM; Vehicle mice: 2.19±0.55 kPa for outer TM and 1.35±0.73 kPa for 

inner TM). Error bars: standard deviation. ***p < 0.001. 

An unexpected observation in our study was that outflow resistance was not 

significantly related to IOP (R2 = 0.154), in the DEX treatment study. There are several 
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possible explanations of this observation, besides the relatively small sample size. 

Consider Goldmann’s equation (Equation 8):  

                                          𝑸 = 𝑪 (𝑰𝑶𝑷 − 𝑬𝑽𝑷) +  𝑸𝒖                                                 (8) 

where 𝑸 is total outflow rate, 𝑸𝒖 is the unconventional outflow rate, EVP is episcleral 

venous pressure and 𝑪 is the conventional outflow facility. The linear relationship 

between IOP and outflow resistance (1/C) only holds when three other factors (aqueous 

humor production rate, episcleral venous pressure and any pressure-independent flow) 

are constant. However, all three factors can differ from animal to animal. Thus, the 

mathematical correlation between outflow resistance and IOP can vary from mouse to 

mouse. The lack of a correlation between facility and IOP within our cohort of mice may 

suggest that the TM adapts to “external” factors such as EVP and inflow rate to try to 

reach a target IOP level.  

As discussed in Section 3.6, outlier detection procedures were performed, and again, 

statistical testing outcomes remained the same for all the statistical tests when outliers 

were excluded. In the facility comparison, we detected 1 outlier for DEX mice and 1 

outlier for vehicle mice; in the TM stiffness comparison, we detected 2 outliers for the 

DEX group.  

One limitation of this study is that the clearance mechanisms of nanoparticles from the 

subconjunctival space after injections were not investigated. Further studies may need to 

test the degradation rate of the particles and better understand their clearance route over 

time after injection. It would also be worthwhile to determine whether their presence 

alone can affect tissue mechanical properties and IOP, which could be done by 

comparing eyes with ghost NP injection to naïve eyes. 
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In summary, this project investigated the role of mechanical properties of TM in 

outflow resistance in mouse eyes, showing that outflow resistance is positively and 

significantly associated with TM stiffness in DEX-treated mice. These data demonstrate 

that mechanical properties of TM are closely involved in the function of the outflow and 

this finding has interesting implications. Importantly, manipulating TM stiffness via 

mechanisms beyond ROCK inhibition may be a fruitful approach to restore normal 

outflow dynamics in SIG. Further, TM stiffness might be a surrogate marker for 

conventional outflow pathway function in general. Novel technologies are being 

developed to measure ocular tissue stiffness in situ [151-154], and could thus hold 

promise for future diagnostic benefit in SIG if they could be adapted to the TM.  
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CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 Summary of the Main Findings and Contributions  

5.1.1 Development of a Method to Directly Measure Trabecular Meshwork (TM) 

Stiffness in Mice 

By combining the techniques of cryosectioning and AFM, we were able to develop a 

technique to measure compressive Young’s modulus of TM in the mouse eye. This is the 

first time that the stiffness of mouse TM has been measured. In this approach, the mouse 

TM can be clearly identified in cross-section by using the pigmented ciliary body and the 

open lumen of Schlemm’s canal (SC) as landmarks. We expect that this approach will be 

used in future work, for example to identify molecular factors and associated genes 

involved in TM stiffness regulation. Progress in this area may lead to further 

understanding of the role of TM stiffness in ocular hypertension, which may help guide 

the design of future glaucoma therapies. In addition, this approach could potentially be 

applied to measurement of other tissues that are not easily accessible or inappropriate for 

measurements with conventional mechanical testing instruments due to size limitations.  

5.1.2 Development of a Method to Estimate Human TM Stiffness in situ 

By combining numerical modeling and advanced optical coherence tomography 

(OCT), we were able to estimate human TM (hTM) stiffness without excision of the TM. 

Our results showed that: 
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1. The elastic modulus of normal hTM ranged from 42 to 102 kPa (mean, 70 ± 20 

kPa), which was lower than glaucomatous hTM samples, ranging from 79 to 123 

kPa (mean, 98 ± 19 kPa).  

2. TM stiffness measured by AFM was approximately 1/40 of that estimated by 

inverse FEM. This difference was almost certainly due, at least in part, to 

different modes of testing (compressive in AFM versus primarily tensile by SC 

luminal pressurization). 

3. Outflow facility and TM stiffness were significantly correlated. For consistency 

with mouse studies, we here replot our data to show the correlation between 

outflow resistance and TM stiffness. The correlation reached statistical 

significance (Figure 5.1, R2= 0.85, p=0.0086), suggesting that more than 80% of 

the variation in outflow resistance was associated with variation in TM stiffness in 

human eyes. 

 

Figure 5.1: Cross-plot between TM stiffness (estimated by inverse FEM method) 

and outflow resistance (1/C) from normal (blue symbols) and glaucomatous (red 

symbols) human eyes. The solid line and equation represent the linear regression of 

the pooled data. 
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This percentage is larger than we observed in mice, where approximately 40% of 

the variation in outflow resistance was attributable to changes in TM stiffness. 

This discrepancy might reflect the difference in sensitivity of outflow resistance 

to the variation in TM stiffness between species. 

4. Additionally, this approach can be extended to 3D to predict the stiffness of other 

outflow structures/tissues, such as transluminal structures across SC and septae at 

collector channels (CC), which may also play a role in influencing aqueous humor 

drainage. 

5.1.3 The TM stiffness in Mice across a Range of Conditions 

With a cryosection-based AFM technique, we were able to measure TM stiffness in 

mice across a range of conditions, including natural variation across wild-type strains and 

in DEX treatment. Our main findings are: 

1. Some DEX-treated mice had much stiffer TMs than control mice, despite the non-

significant difference on average between the DEX and control groups. 

2. There was a significant correlation between aqueous outflow resistance and TM 

stiffness in both wild-type strains of mice and DEX-treated mice. This suggests 

that an intrinsic link between the mechanical properties of the TM and aqueous 

humor outflow dynamics exists. 

3. The correlation between TM stiffness and outflow resistance for the wild-type 

C57BL/6J mice in the strain study was not significantly different from the same 

correlation for the control C57BL/6J mice in the DEX study (p=0.66). We noted 

that the latter reached statistical significance (p=0.043) while the former did not 
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(p=0.064). This discrepancy might be due to the difference in gender (strain 

study: mixed genders; DEX project: all males) and/or age (average age of 

C57BL/6J mice in the strain study: 12 weeks; DEX study: 18 weeks).  

4. Our data strongly suggest that modulating TM stiffness may be a novel approach 

to restore normal outflow dynamics in glaucoma patients.  

5. Our results have implications for the diagnosis of glaucoma, specifically motivating 

the adaption of in vivo tissue stiffness measurement techniques to the TM. 

Overall, the five questions raised from the three objectives at the beginning of this 

dissertation have been answered. Here are the brief answers to those questions:  

1. Can we measure human TM stiffness without excising the TM from its 

physiological environment? 

Answer: Yes. In the inverse FEM approach, the TM remains intact within each 

anterior segment wedge, with the anterior TM connected to the cornea and the 

posterior TM attached to the ciliary muscle and sclera spur. 

2. Is there a significant correlation between outflow resistance and TM stiffness in 

human eyes? 

Answer: Yes, those two parameters were positively and significantly correlated in 

human eyes. 

1. Can we measure TM stiffness in mice? 
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Answer: Yes, by using the cryosection-based AFM technique, TM in mouse eyes can 

be clearly identified and TM stiffness can be directly measured through a 

compression test. 

3. Is there a significant correlation between outflow resistance and TM stiffness in 

wild-type mice? 

Answer: Yes, there is.  

4. Is there a significant correlation between outflow resistance and TM stiffness in a 

single mouse strain after DEX treatment? 

Answer: Yes, there is. Further, such a correlation exists even within each group, i.e. 

when considering DEX-treated mice or control mice. 

5.2 Future Work 

5.2.1 Refinement of Research Methods 

For the inverse finite element modeling approach, we used the neo-Hookean material 

model for all the tissue components (sclera, TM, cornea and transluminal structures). 

This model works well for hyperelastic materials in the initial linear range where the 

strains are less than 20%. However, it is known that the neo-Hookean material model is 

not ideal at large strains. In our simulations, the maximum first principal strain in the 

deformed state was usually less than 20% for most samples, but only if the pressure 

difference across TM was less than 20 mmHg. This limited the estimation of mechanical 

properties of TM to relatively low strain situations, while higher deformations could 
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occur in abnormal conditions such as glaucoma. Therefore, adopting a more complex 

material model (e.g. the Mooney-Rivlin material model) could potentially allow us to 

examine TM stiffness at higher stress level as well as the nonlinear mechanical properties 

of the TM. However, implementing such a model would come at the cost of greater 

complexity in stiffness calculation and potentially more uncertainty in model parameter 

estimation.  

Another factor not considered in the current inverse FEM study was the anisotropy of 

the TM. Previous studies have shown a large discrepancy in TM stiffness measured 

circumferentially (parallel to the surface of the limbus) and transversely (along the 

outflow direction) [30, 52, 53, 59]. Further, histological images either published in the 

literature or obtained in our lab suggest that the collagen fiber orientations in the uveal 

and corneoscleral meshwork may be quite different. In human TM, the beams in the 

uveal meshwork closest to the anterior chamber are more cord-like and oriented 

predominantly in a net-like fashion, as shown in Gong’s paper (Figure 5.2) [9]. In 

contrast to the uveal meshwork, the corneoscleral TM is composed of flattened sheets. 

Most of the collagen fibers in the beam cores in this region appear to be oriented 

circumferentially in human eyes [155] but a significant portion are also oriented 

transversely. From the above evidence, it would be interesting to include the effects of 

structural anisotropy in models of the corneoscleral meshwork, with the main collagen 

fibers being oriented circumferentially, and to investigate the stiffness in different layers 

of the TM. This approach might allow us to better compare estimated TM stiffnesses to a 

variety of experimentally measured values that use a range of measurement approaches. 

Such a model would require advanced imaging and image processing to identify different 
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layers of the TM from the OCT images, which is extremely difficult using current 

imaging techniques.  

 

Figure 5.2: Diagrammatic representation of the anterior chamber angle. Schlemm’s 

canal (a) is divided into two portions at various points along its length. An internal 

collector channel (Sondermann) (b) opens into the posterior part of the canal. The 

sheets of the corneoscleral meshwork (c) extend from the corneolimbus (e) to the 

scleral spur (d). The beamlike components of the uveal meshwork (f) occupy the 

inner portion of the trabecular meshwork; they arise in the ciliary body (CB) near 

the angle recess and end just posterior to the termination of Descemet’s membrane, 

called Schwalbel’s line (g). An iris process (h) extends from the root of the iris to 

merge with the uveal meshwork at about the level of the anterior part of the scleral 

spur. The longitudinal ciliary muscle (i) is attached to the scleral spur but has a 

portion which joins the corneoscleral meshwork (double-headed arrows). 

(Reproduced from Hogan et al., 1971) 

In the inverse FEM approach, only one stiffness value was obtained for the entire TM 

region under investigation. However, we expect that TM stiffness can vary from location 
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to location within a single cross-section since the microstructures and ECM/cell densities 

are different for the three layers of TM (Figure 5.2). Thus, it would be better to estimate 

local TM stiffness and study the change of stiffness as a pattern instead of a single value 

which represents the bulk TM stiffness in a cross-section. This would require some sort 

of an advanced imaging and tracking technique to determine local deformation of the TM 

in a cross-sectional plane. Moreover, such an approach would add considerable 

computing time to the inverse FEM process because the deduction process involves 

multiple TM stiffness representing multiple locations. 

All our AFM measurements used the bottom camera, which means that we looked at 

the sample from its bottom while the AFM tip probed the upper tissue surface. This 

configuration added uncertainty about the AFM measurement locations due to the 

cantilever tip and tissue having different focus planes. We estimated that the difference 

between the location of the cantilever tip as observed from the bottom camera and the 

actual indentation location was approximately 20 µm for 1mm thick samples. Samples 

with different thickness or tissue compositions (thereby with different coefficients of 

refraction) might result in larger deviations. Although the deviation between the desired 

and actual measurement locations was much less than the typical width of the TM band 

in human eyes, this uncertainly in location may introduce errors into the measured TM 

stiffness, especially when combined with errors in TM boundary definitions. Therefore, 

an improved method to track the measurement locations would be desirable. Two 

possible approaches may be worth trying in this regard. First, instead of using the bottom 

camera, using a new upper camera with much higher resolution would allow us to view 

both the sample and the cantilever from the top. In that case, the focus plane of the 
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cantilever tip and the measurement location would be the same and any deviation induced 

by the sample thickness could be avoided. Another possible solution could be to use very 

fine markers to replace the Sharpie markers we used to draw on the back of the glass 

slide. For example, a transmission electron microscopy grid (Figure 5.3) with different 

numbers of grids and diameter could serve as a set of fine markers when adhered to the 

back of the slide, overlapping with the target measurement locations of the tissue. In this 

way, it would be possible for users to track each individual measurement location more 

accurately and to allow for repetitive measurements on the same spot before and after 

certain treatment or experimental conditions. 

 

Figure 5.3: Transmission Electron Microscopy grids with 200 mesh, 3.05 mm O.D. 

Image source: https://www.tedpella.com/grids_html/maxtafrm.htm 

5.2.2 Additional Experiments 

One limitation we mentioned for the cryosection-based AFM technique is that it is 

possible the freeze-thaw procedure may alter tissue stiffness. Additional validation tests 

could be performed to test whether this is indeed the case. Ideally, we need to compare 

tissue stiffness at the same location on a cutting surface before and after freezing since in 

the AFM technique we used, the TM stiffness was measured on a cutting surface of the 

cryosections. For such a study, the cornea could be considered as a surrogate tissue for 

https://www.tedpella.com/grids_html/maxtafrm.htm
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the TM, since it would be nearly impossible to cut cross-sections from fresh TM in 

mouse eyes. The simplified method we propose is as follows: 

1. Cut a strip of fresh cornea from the anterior segment and fix it to a glass slide by 

putting glue dots on the edge, with the corneal endothelium facing upward; 

2. Make an oblique cut on the surface using micro-scissors or a sharp razor blade; 

3. Fix a grid (Figure 5.3) with a suitable size to the back of the slide; 

4. Make AFM measurements on selected locations which fall onto the cutting 

surface region on the fresh cornea, with the aid of the grid; 

5. Snap-freeze the whole slide with the cornea strip covered by O.C.T., and stored 

the slide in the freezer; 

6. After a few days, make AFM measurements on the same locations on the thawed 

sample; 

7. Compare the differences in cornea stiffness in steps 4 and 6 using Wilcoxon rank-

sum test. 

One aspect not considered is whether DEX affects other anterior segment tissues, 

including the cornea. Although in Chapter 4 we found that the IOP readings obtained 

from the tonometer were nearly identical to the actual IOP, there could be more subtle 

effects of DEX on the stiffness of the cornea or other anterior segments tissues. It is 

possible that the DEX injected into the subconjunctival space may diffuse into the 

aqueous humor and therefore may have access to the cornea when aqueous humor flows 

through the anterior chamber. Thus, another experiment for future studies would be to 

measure corneal stiffness. We suggest using the MicroSquisher device (CellScale, 

Waterloo, Canada) rather than AFM for this experiment because the Microsquisher is 
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able to test the overall stiffness of the sample on a much larger scale. We propose the 

following simplified experimental protocol: 

1. For each frozen eye, the cornea is removed and then thawed at 4 ºC. A 1 mm 

biopsy punch is used to obtain a small round cornea sample from the flat mount 

piece of cornea and stored in 4 ºC PBS until used.   

2. Each sample is tested in a parallel-plate compression configuration using a 

CellScale MicroSquisher and accompanying SquisherJoy software program. The 

area of the stainless-steel compression plate is about 5 mm2. All samples are 

tested in a PBS fluid bath warmed to 37 °C.  

3. Prior to compression, the compression plate of the cantilever is lowered toward 

the sample surface until gentle contact occurs. Preliminary studies have shown 

that when the compression plate applies 100 nN to the cornea surface, the sample 

curvature is barely seen and the entire sample surface contacts the compression 

plate. Samples are compressed to at least 25% engineering strain at a rate of 2.5 

um/second, held at a constant deformation for 10 seconds, and then released at a 

rate of 2.5um/sec to record any hysteresis. The above measurement parameters 

reference the parameters used for measuring stiffness of stem cell spheroids [156] 

and may need to be adjusted for cornea measurement.   

4. The resulting force-deformation curves are converted to engineering stress vs. 

engineering strain relationships. The effective Young's modulus is calculated by 

fitting the 0-20% strain range with a linear regression line. The resulting slope of 

the regression line is taken as the effective modulus of the sample [157, 158].  
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5. Compare cornea stiffness from DEX mice and control mice using Wilcoxon rank-

sum test. 

Another aspect not included in our mouse studies which needs further investigation is 

the mechanism behind TM stiffness variation. It has been suggested that TM cells, TM 

ECM and the interactions between the two can contribute to the overall TM stiffness 

supported by evidence such as increased basement membrane materials, increased cell-

cell junction complexity, and increased fibrillar material under the inner wall of 

Schlemm’s canal [147] in DEX-treated mice. Additional experiments could be done to 

quantify the levels of protein expression in the TM, such as α-SMA (overexpression of α-

SMA has been detected in primary human TM cells treated with DEX [60]), and then 

correlating protein expression levels with TM stiffness. 

5.2.3 Long-term Goals 

One of the long-term translational goals of the research in this dissertation is to find 

novel treatments to restore normal outflow resistance in glaucoma patients by better 

understanding the pathophysiology of altered mechanical properties in outflow tissues. 

Currently, the only treatment for POAG is to reduce IOP through a variety of approaches. 

However, lowering IOP does not cure the disease since glaucoma symptoms are often 

noticed by patients in late stage when damage to the optic nerve is permanent. Thus, early 

diagnosis of glaucoma and timely treatment would be greatly benefit patients’ quality of 

life.  

Since we have shown that outflow function (described by outflow facility or outflow 

resistance) is closely correlated with TM stiffness in both human eyes (Chapter 2) and 
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mouse eyes (Chapter 3 and 4), it has become clear that measuring TM stiffness in vivo 

could be clinically useful. For example, TM stiffness could be another testable risk factor 

for glaucoma and could provide guidance for potential treatment. Longitudinal studies of 

TM stiffness in glaucoma patients could also help understand whether stiffening precedes 

ocular hypertension, or vice versa. For example, if the TM became significantly stiffer in 

a person who did not receive any glaucoma medication, it might indicate that the person 

was a candidate for “TM softening”. A recent study published by the Amini lab [159] has 

shown an example of estimating TM stiffness in vivo using an inverse finite element 

approach. However, although this technique is exciting and promising, improvements are 

needed in several aspects before clinical application can be envisioned, e.g. increasing 

resolution of the OCT images, quantifying the actual incompressibility of the TM, etc. 

How could we manipulate TM stiffness? To answer this question, we need to identify 

the underlying signaling pathways which regulate protein expression, ECM 

reorganization/turnover and TM contractility by TM cells or surrounding tissue 

structures, such as ciliary muscle and endothelium of Schlemm’s canal. Further, it may 

worth trying to map genes that are responsible for those molecular factors which could be 

another whole research area for diagnosis and treatment (i.e. gene therapy). Such studies 

are beyond the scope of this thesis.  

5.3 Author Contributions to Each of the Studies 

For clarity, the contributions of the author to each of the collaborative studies reported in 

this thesis are summarized here. 
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• FEM study (Chapter 2): Model creation, TM stiffness estimation, AFM 

measurements and data analysis, primary writing. 

• Strain Study (Chapter 3): TM stiffness and outflow facility collection and data 

analysis, primary writing. 

• DEX Study (Chapter 4): TM stiffness value collection and data analysis, primary 

writing. 

• All studies described in the Appendices were done by the author.  
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. SUPPLEMENTARY MATERIALS FOR CHAPTER 2 

A.1  Mesh Refinement Study 

A.1.1 Methods 

For the 2D modelling approach, it was important to ensure that any finite element 

mesh was sufficiently refined so that the numerical simulations based on that mesh were 

not prone to significant numerical error, while also minimizing the required computing 

time. To test this, we carried out a mesh refinement study on the finite element model 

created from quadrant 77R-IN. All parameters including boundary conditions, loading 

pressure, and tissue stiffness remained the same. TM stiffness was set at 114 kPa. 

Simulations were run for a series of different element sizes which were characterized by 

edge length. 

A.1.2 Results 

The predicted SC perimeter and area both converged to asymptotic values as the mesh 

element size was reduced (Figure A.1). Based on these results, an edge length of c. 7 𝜇m 

was judged suitable to balance accuracy and computational cost, which was 

approximately the average element size we used for our models (5 – 10 𝜇m). 
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Figure A.1: Mesh refinement test for FEM simulation. Y axes: SC lumen perimeter 

(𝜇m) and area (𝜇m2). X axis: average edge length of hexahedral element (𝜇m). Note 

inverted scale for x-axis. Sample: inferior nasal quadrant of Eye 77R 

A.2  3D Model 

A.2.1 Methods 

With the pseudo-2D modelling approach, the model geometry was created based only 

on tissue structures observed from a single 2D OCT slice. The tissue regions modeled in 

2D at a single location were unable to adequately characterize the TLS oriented 

circumferentially in SC and therefore, it was impossible to depict those tissue structures 

which spanned several slices. Thus, a 3D model, including tissue structures such as TLS, 

collector channel and septae, was built and the estimated TM stiffnesses were compared 

between the 2D and 3D approaches. Specifically, a 3D model was built for the superior 

temporal quadrant of eye 80R to compare against the 2D approach. The geometry for the 

3D model was based on 9 adjacent OCT images, instead of a single image as for the 

pseudo-2D models. The central OCT image used in the 3D model was the same as that in 

pseudo-2D model for eye 80R, giving a 3D model thickness of 80 µm thus allowing us to 

include potentially relevant outflow tissue structures such as transluminal structures 

(TLS), septa and a collector channel (CC) (Figure A.2). Cornea/Sclera and CB were 
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given the same stiffness values as those in pseudo-2D model. In the absence of any 

specific data, septae were assigned a stiffness which was close to that of TM. A pressure 

load was applied to all inner surfaces of the open SC and CC lumens, with a magnitude 

identical to that applied in the pseudo-2D model of the same quadrant. This did not 

precisely replicate the experimental situation, but allowed a direct comparison between 

results of the pseudo-2D model and the 3D model. As with the pseudo-2D models, the 

SC lumen configuration was compared between simulated and experimentally measured 

results. Specifically, the difference in SC area at the higher pressure (in this case 30 

mmHg) of the 3D model was computed as 

                        ∆Area = √∑ (𝑨𝒓𝒆𝒂𝑶𝑪𝑻_𝒍𝒂𝒚𝒆𝒓_𝒏 − 𝑨𝒓𝒆𝒂𝑭𝑬𝑴_𝒍𝒂𝒚𝒆𝒓_𝒏)𝟐𝟗
𝒏=𝟏                    (9)       

where the index n refers to summation over the OCT cross-sections that the model was 

constructed from. This quantity was computed for different TM stiffnesses. The best 

match between computed and experimentally measured SC area was achieved at a TM 

stiffness of 48 kPa, which can be compared to 60 kPa obtained from the pseudo-2D 

model. 
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Figure A.2: One cross-section of the 3D model for superior quadrant of eye 80R. 

TM = trabecular meshwork, CB = ciliary body, TLS = Trans Luminal Structure, 

ET = Endothelial lining, CC = collector channel. 

A.2.2 Results 

The best match between computed and experimentally measured SC area was 

achieved at a TM stiffness of 48 kPa (Figure A.3), which can be compared to the value 

of 60 kPa obtained from the pseudo-2D model. 
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Figure A.3: Quantification of SC lumen area difference at a reservoir pressure of 30 

mmHg in the 3D model. The X-axis is Young’s modulus of TM. Blue curve is the 

difference between observed and computed SC lumen area. The minimum 

difference was observed at 48 kPa. Sample: superior temple quadrant of Eye 80R. 

 

Figure A.4: Distribution of the total displacement of the 3D model at 6 different 

locations (A-F) along the SC lumen. Reservoir pressure = 30 mmHg.  Unit of color 

bar is µm. Sample: superior temple quadrant of Eye 80R. 
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In addition, our 3D model predicted that, in general, the largest TM displacement 

occurred in the area around the inner wall of SC and center of the TM (Figure A.4). 

Interestingly, relatively large deformations also appeared in the TLS region which 

divided the canal into compartments at the entrance of CC (Figure A.4, A-C, E-F).   

 When comparing deformation patterns between the pseudo-2D and 3D models at 

the same scanning location, the deformation of the outflow tissues looked very similar 

(Figure A.5), except that there was more deformation experienced in the septa region in 

the 3D model. The slightly lower TM stiffness predicted by the 3D model (48 kPa vs. 60 

kPa) might be partially explained by these TLS, since the deformation of those structures 

suggested that they are in tension and therefore resisted SC lumen distention. 

 The 3D model had several advantages over the pseudo-2D model. It provided a 

more realistic tissue geometry which included multiple OCT slices. However, it suffered 

from some limitations. For example, the exact boundaries of TLS were not entirely clear 

and the stiffness used for TLS was somewhat arbitrary. In view of the very significant 

time commitment needed to create such 3D models, and the relatively small difference in 

predicted TM stiffness between the 3D and pseudo-2D models, we chose to simply use 

pseudo-2D models in this work. 
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Figure A.5: Color map of the total displacement at the same location in 2D (left) and 

3D (right) model. Sample: superior temple quadrant of Eye 80R. 

 A.3  Sensitivity Analysis 

A.3.1 Methods 

In practice, the biomechanical properties of outflow tissue other than the TM can vary 

from sample to sample. In addition, manual tissue boundary delineation may differ from 

reality and is somewhat subjective. We thus performed a sensitivity analysis on these 

aspects of the simulations in the 2D modelling approach. 

First, the effects of sclera/cornea and ciliary body stiffnesses on predicted TM stiffness 

were evaluated using Latin Hypercube Sampling (LHS). LHS is an efficient stratified 

sampling technique where each input variable in a simulation is described by a 

probability distribution which is decomposed into equi-probable intervals [160]. For each 

simulation, a value for each variable is randomly selected from one equi-probable 

interval, without replacement. These input variables are used to drive a numerical 

simulation, and this process is repeated for many combinations of input variable values. 

An advantage of LHS is that it efficiently provides sensitivity information, which in this 

case was used to determine how changes in two variables (sclera/cornea stiffness and CB 

stiffness) impacted on estimated TM stiffness. The minimum number of required 
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simulations, 𝐍, for a LHS study has been empirically established as 𝐍 > 𝟒𝐤/𝟑, where 𝐤 

is the number of input variables [160, 161]. In this study, fifteen random combinations of 

sclera/cornea and CB stiffnesses were generated by LHS, which satisfied the above 

criterion.  

A key step in the LHS process is specifying the probability distributions of the input 

variables. We took mean stiffnesses for sclera/cornea and CB to be 3000 kPa and 100 

kPa, respectively, as in the preliminary simulations. The stiffness range for normal 

human sclera/cornea was taken as 1000 – 5000 kPa [116, 162]. CB stiffness varied from 

30 – 170 kPa. The lower and upper bounds for the CB stiffness were assumed to be mean 

± 0.7*mean, to match the proportional range for sclera/cornea. Values in both ranges 

were assumed to be uniformly distributed. 

Next, the effect of boundary delineation on estimated TM stiffness was tested using 

three different TM/CB delineations, where the boundary between the two tissue 

structures was most ambiguous and indistinguishable as observed in OCT images 

(Figure A.6). Three different plausible CB delineations were established (Figure A.6) 

and the analysis was repeated for each delineation.  
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Figure A.6: Different TM/CB boundary delineations. Three possible TM/CB 

boundaries (a - c) are indicated by yellow dashed lines overlain on an OCT image. 

Sample: inferior nasal quadrant of Eye 77R. 

A.3.2 Results 

We found that estimated TM stiffnesses were relatively insensitive to variations in 

input parameters (mean±SD: 122 ± 8.7 kPa for the quadrant considered). In fact, the 

estimated TM stiffness were between 114-120 kPa for more than 65% of the LHS 

combinations (Figure A.7). Even though statistical analysis suggested that there was a 

significant partial correlation between two factors (stiffness of sclera/cornea and CB) and 

the estimated TM stiffness (p < 0.05), the squared partial rank correlation coefficients, 

which is a nonparametric measure of statistical dependence between the ranking of two 

variables, showed moderate correlations (< 0.5) between CB stiffness and estimated TM 

stiffness (Table A.1). Overall, this analysis indicated that the estimated TM stiffness was 

insensitive to variation of CB stiffness, which we judged as the major source of material 

property uncertainty in our simulations. 
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For the sensitivity analysis on TM/CB boundary delineation, the estimated TM 

stiffness (120 kPa) was identical for all three delineations.  

 In summary, the sensitivity analyses indicated that estimates of TM stiffness were 

relatively insensitive to both surrounding tissue stiffnesses and boundary delineation 

between the CB and TM. 

 

Figure A.7: Histogram of estimated TM stiffnesses arising from LHS analysis. 

 

Table A.1: Partial correlation between stiffness of two tissue components 

(sclera/cornea and CB) and TM* 

              Sclera/Cornea                      CB 

prcc2 0.89 0.45 

1.1                  p-value < 0.05 < 0.05 

*𝑝𝑟𝑐𝑐2: squared partial rank correlation coefficient (or Spearman rank correlation coefficient), computed as 

𝑝𝑟𝑐𝑐 = 1 − 6 ∑
𝐷𝑖

𝑁(𝑁2−1)

𝑁
𝑖=1 , where 𝐷𝑖is the difference between the ranks assigned to the corresponding pairs 

and N is the sample size. Ties are assigned average ranks [163, 164].   
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 A.4  Corrected Loading Pressure 

A.4.1 Methods 

We realized that the pressure within the SC lumen is not necessarily the same as the 

reservoir pressure because of flow resistance in the system. For FEM, we must apply a 

pressure load that is consistent with the real situation in order to accurately simulate 

tissue deformation. The following shows how we estimated the relevant flow resistances 

and thus luminal SC pressures, using quadrant 77R-IN as an example. 

Resistance Calculation in the OCT-based Inflation Test System: 

(1) Resistance of tubing: There were 6 sections of tubing with known inner diameters 

(ID) and lengths (Figure A.8) in the system. We assumed the tubing to be cylindrical and 

thus used Poiseuille flow (Equation 10) to calculate the hydrodynamic flow resistance to 

flow 

                                                                 𝑹𝒄𝒚𝒍𝒊𝒏𝒅𝒆𝒓 =
𝟏𝟐𝟖𝝁𝑳

𝝅𝑫𝟒       (10) 

where 𝜇 is the viscosity of saline, taken as 1 cP; 𝑳 is the length of the tubing; and 𝑫 is the 

inner diameter of the tubing.  
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Figure A.8: Schematic diagram of tubing system upstream of cannula. All tubing 

segments are numbered and labeled with inner and outer diameters. 

(2) Resistance of cannula: The dimensions of the cannula were measured on several 3D 

OCT images using Fiji software and are shown in Figure A.9. The cross-sections of the 

cannula were taken to be ellipses. Since both semi-major and semi-minor axes of the 

ellipses are functions of the distance from cannula tip, the resistance of cannula could be 

calculated by treating the flow as locally Poiseuille and integrating along the length of the 

cannula [18], as follows: 

                             𝑹𝒄𝒂𝒏𝒏𝒖𝒍𝒂 =  ∫
𝟒𝝁(𝒃𝟐(𝒙)+𝒄𝟐(𝒙))

𝝅𝒃𝟑(𝒙)𝒄𝟑(𝒙)
𝒅𝒙

𝑳

𝟎
                                                (11) 

where b(L) and c(L) are the local semi-major and –minor axes of the ellipse; 𝜇 is the 

viscosity of saline; L is the length of the cannula and 𝑅𝑐𝑎𝑛𝑛𝑢𝑙𝑎 is the cannula resistance. 
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Figure A.9: Schematic view of the cannula. b: semi-major axis of ellipse; c: semi-

minor axis of ellipse 

(3) Resistance of SC: We assume the SC lumen to be a cylinder with elliptic cross section. 

The SC lumen resistance 𝑅𝑆𝐶  can be calculated as follows: 

                                     𝑹𝑺𝑪 =
𝟒𝝁𝑳𝑺𝑪(𝒃𝑺𝑪

𝟐 +𝒄𝑺𝑪
𝟐 )

𝝅𝒃𝑺𝑪
𝟑 𝒃𝑺𝑪

𝟑                                                             (12) 

where 𝑏𝑆𝐶 and 𝑐𝑆𝐶 are the semi-major and –minor axes of the elliptic SC cross section 

measured by ImageJ (Version 1.5, National Institutes of Health, Bethesda MD) from OCT 

scans; 𝜇 is the viscosity of saline; and 𝐿𝑆𝐶  is the length of SC. 𝐿𝑆𝐶  was approximated as 8 

mm since each quadrant is one fourth of the anterior eye, which made it about 9 mm, and 

one millimeter was taken off for wastage from cutting and trimming, etc.  

The distance from the tip of the cannula to the scan location was about 2 mm. Thus, 

the pressure at the scan location 𝑷𝒔𝒄𝒂𝒏 was equal to the pressure drop from scan location 

to the free end of the SC, which had a length of three fourths of the total SC length for 

this specific quadrant: 

                                              𝑷𝒔𝒄𝒂𝒏 =
𝟑

𝟒
𝑹𝑺𝑪 × 𝑸                                                           (13) 
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where Q is the flow rate along the SC (see equation 14). We assumed the pressure on the 

free end of SC (Figure A.10) was zero referenced to the bath pressure. 

                                      𝑸 =
𝑷𝒓𝒆𝒔𝒆𝒓𝒗𝒐𝒊𝒓

𝑹𝒕𝒖𝒃𝒊𝒏𝒈+𝑹𝒄𝒂𝒏𝒏𝒖𝒍𝒂+𝑹𝑺𝑪
                                                     (14) 

 

Figure A.10: Representative cross-sectional OCT image containing the entire SC 

lumen. Cannula was inserted into the right side of the SC. The region inside the blue 

circle shows apparent SC collapse, which was occasionally seen in some samples. 

A.4.2 Results 

For quadrant 77R-IN, the total tubing resistance 𝑹𝒕𝒖𝒃𝒊𝒏𝒈 and cannula resistance were 

estimated to be 0.26 and 1.53 mmHg/(𝜇L·s) (Table A.2). The resistance of SC was 

107.42 mmHg/(𝜇L·s). 

Table A.2: Resistance of tubing segments 

Tubing segment 

number 

Resistance (mmHg/𝜇L·s) 

1 0.0033 

2 0.0054 

3 0.0943 

4 0.0302 

5 0.0598 

6 0.0687 

𝑃𝑠𝑐𝑎𝑛 values at different 𝑃𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 values are summarized in Table A.3. The difference between 

𝑃𝑠𝑐𝑎𝑛 and 𝑃𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟  is greater when 𝑃𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 is higher. 
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Table A.3: Flow rate and pressure in the experimental system* 

 𝑷𝒓𝒆𝒔𝒆𝒓𝒗𝒐𝒊𝒓 = 5 mmHg 

(undeformed) 

𝑷𝒓𝒆𝒔𝒆𝒓𝒗𝒐𝒊𝒓 = 20 mmHg 

(deformed) 

𝑸 0.05 0.18 

𝑷𝒔𝒄𝒂𝒏 3.69 14.75 

*Q: flow rate, unit: 𝜇L/s; P: pressure, unit: mmHg 

A.5  Shear Stress Applied to the Endothelial Cells in the SC 

It is important to note that the SC endothelial cells (SCE) cells may also play an 

important role in glaucoma. In vivo, these cells are subjected to a shear stress due to the 

flow of aqueous humor within SC. It has been suggested that the shear stresses acting on 

SCE could reach levels comparable to those in the arterial system and play a signaling 

role through nitric oxide release [165]. Thus, we asked what the shear stress acting on 

SCE was during our experiments, since there was a non-zero flow along the SC (Table 

A.3) during the OCT experiment. The following shows an example calculation using 

quadrant 77R-IN.  

A.4.1 Methods 

We used the same theoretical model previously developed by Ethier et al. [165]. Briefly, 

we used the same value for the viscosity of aqueous humor (0.75 cP), and used the 

following values specific to the 77R-IN quadrant:  

• Anterior-posterior dimension of SC (2a) = 186 µm; 

• Inner-outer wall separation of the SC, 2b, of 40 or 52 µm at reservoir pressures of 

5 and 20 mmHg, respectively; and 
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• Total flow rate in SC of 3.0 or 10.8 µl/min at reservoir pressures of 5 and 20 mmHg, 

respectively (Table A.3).  

We assumed that all the flow delivered by the cannula passed circumferentially within SC 

and exited the cut end of the canal, neglecting drainage from collector channels. Thus, the 

estimates given below are upper bounds.  

A.4.2 Results 

For quadrant 77R-IN, the circumferentially averaged shear stress was 10.0 dynes/cm2 

at a reservoir pressure of 5 mmHg and 21.4 dynes/cm2 at 20 mmHg. These values were 

larger than those previous reported except at extreme canal collapse [165], due primarily 

to the large flow rate passing within SC. It is likely that these shear stress levels would 

trigger nitric oxide release [166], which could lead to a softening of the TM, depending 

on the viability of the resident cells.  
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. SUPPLEMENTARY MATERIALS FOR CHAPTER 3 

AND 4 

B.1  Statistical Analysis 

It is common in the literature to average values from two eyes of an animal to get a 

single “per animal” value. This avoids the statistical pitfall of treating the two eyes as 

independent. We chose not to follow this approach in the main body of the thesis, 

because such averaging can possibly obscure correlations, e.g. if the two eyes of an 

animal had very different values for measured outcomes and the two outcomes being 

correlated were related in a nonlinear manner.  

For completeness, and to enable comparisons with existing data, we present here the 

statistical analysis and results following the “average two eyes to get a single value per 

animal” approach. All comparisons between groups were performed with the same 

statistical test (Wilcoxon rank-sum test) as used in the main body of the thesis, with the 

data for each mouse being taken as the mean values from the two eyes. The exceptions 

were as follows 

• Mice in cohorts 1 and 2 from the DEX study had only one treated eye.  

• Some mice had a valid facility measurement for only one of the eyes.  

In both cases, only the data (facility, TM stiffness or IOP) from the treated or 

“successful” eye was used for that mouse.  
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B.2  Results 

The main conclusions were unchanged when the data were analyzed in this way, 

except that correlation between outflow resistance and TM stiffness was significant only 

within the control group, but not within the DEX group. 

B.2.1 Effect of Genetic Background on Facility and TM Stiffness  

The facility of C57BL/6J (n=12) mice was slightly higher than that of CBA/J (n=10) 

mice (6.33 ± 2.28 vs. 5.97 ± 2.43 nl/min mmHg; p = 0.717, Figure B.1). The average TM 

stiffness in C57BL/6J (n=18) mice was less than in CBA/J mice (n=10), but this 

difference was not significantly different (2.10 ± 1.04 vs. 2.92 ± 2.33 nl/min mmHg; 

p=0.581, Figure B.1). Similarly, we observed a significant correlation between outflow 

resistance (1/C) and TM stiffness when pooling data from the two strains. 

B.2.2 Effects of DEX treatment 

IOP remained near the baseline level (day 0) in control mice (Figure B.2). On the day 

mice were sacrificed (day 20-40), IOP was 26.91±2.39 mmHg (mean ± SD) in DEX-

treated mice and 20.51±3.03 mmHg in control mice (p<0.001, Figure B.2, B.3). 

The mean facility of DEX mice was significantly lower than that of control mice 

(Figure B.4; DEX: 2.76 ± 0.88 nl/min mmHg; Control: 3.73 ± 1.06 nl/min mmHg; p= 

0.032). The IOP measured before death tended to be negatively correlated with 1/C in the 

same eye (Figure B.4).  
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             A                                                          B 

  

                            C 

 

Figure B.1: (A) Outflow facility (C) and (B) TM stiffness for two mouse strains. For 

each box, the central line represents the median, and the edges of the box are the 

25th and 75th percentiles, and whiskers extend to the most extreme data points not 

considered outliers. Each dot represents the average of two eyes per mouse. Number 

of eyes shown for facility plot are n=12 for C57BL/6J and n=10 for CBA/J. For 

stiffness plot, the respective values are n=18 and n=10. NS: Not Significant. (C) 

Cross-plot between outflow resistance (1/C) and TM stiffness, with each data point 

representing one mouse. The black solid line and equation represent the linear 

regression of the pooled data. The gray-shaded region shows 95% confidence 

bounds for the regression. For each mouse, data from both eyes was averaged, 

except in cases where the one of eyes yielded invalid facility data due to technical 

issues, in which case data from the one eye was used. Only mice where both outflow 

resistance and TM stiffness were measured were included. Number of data points: 

n=12 for C57BL/6J, n=8 for CBA/J. 

The average TM stiffness in DEX-treated mice was about 27% higher than that in 

vehicle-treated mice, but this difference did not reach statistical significance (2.38±1.34 
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vs. 1.79±0.58 kPa; p=0.25; Figure B.5). Again, there was a positive correlation between 

resistance and TM stiffness for pooled data which reached statistical significance 

(p=0.017; R2 = 0.27; Figure B.5). Further, the same correlation was also statistically 

significant within control group, but not in DEX group (DEX group: R2=0.258, 

p=0.1106; Control group: R2=0.40, p=0.0499, Figure B.6).  

 

Figure B.2: IOP as a function of time for DEX-treated (grey) and control (white) 

mice averaged over five cohorts. For cohort 1 and 2, DEX or vehicle were injected 

on day 0 and 14. For cohort 3-5, injections were performed on day 0, 7 and 14. All 

IOPs were measured immediately before injections. Bars are standard deviation. 

**p<0.01, ***p<0.001. p-values were Benjamini-Hochberg corrected. For each 

mouse, the average IOP from both eyes was used. At day 0, 7 and 14, n=25 DEX-

treated mice and n=16 vehicle-treated mice. At the day of sacrifice (day 20-40 

depending on cohort), n=24 DEX-treated mice and n=15 vehicle-treated mice. Two 

mice were injured during fighting and were euthanized at day 14. 
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        A                                                                       B 

 

                          C 

 

Figure B.3: DEX treatment affected IOP and outflow facility. (A) Boxplot of IOP for 

DEX-treated (n=24) and vehicle-treated mice (n=15).  (B) Boxplot of outflow facility 

(C) for DEX-treated (n=11) and vehicle-treated mice (n=10). For each box, the 

central mark is the median, the edges of the box are the 25th and 75th percentiles, 

and whiskers extend to the most extreme data points not considered outliers. Each 

dot represents the data from one eye. (C) IOP measured on the day mice were 

sacrificed plotted as a function of outflow resistance (1/C) for DEX-treated (grey 

dots, n=11) and vehicle-treated (white dots, n=10) mice. The black solid line is the 

best fit using linear least squares regression. The gray-shaded region shows 95% 

confidence bounds for the regression. *p-value<0.05; ***p-value<0.001. NS.: Not 

Significant. Data in panels B and C are from cohort 3-5. 
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Figure B.4: Boxplot of TM stiffness for DEX-treated (n=25) and vehicle-treated 

mice (n=16). For each box, the central mark is the median, the edges of the box are 

the 25th and 75th percentiles, and whiskers extend to the most extreme data points 

not considered outliers. Each dot represents the data from one eye. NS: Not 

Significant. 

 

Figure B.5: Cross-plot between outflow resistance (1/C) and TM stiffness for DEX-

treated (n=11) and vehicle-treated mice (n=10). The blue line and equation 

represent the linear regression of the pooled data. The gray-shaded region shows 

95% confidence bounds for the regression. Different shapes represent different 

cohorts. 
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Figure B.6: Cross-plot between outflow resistance (1/C) and TM stiffness within 

each group of mice, with DEX mice shown in red (n=11) and control mice shown in 

green (n=10). The gray-shaded regions show 95% confidence bounds for the 

regressions. 
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. UNSUCCESFUL TM STIFFNESS MEASUREMENT 

APPROACHES 

The techniques used to measure TM stiffness in this thesis were arrived at after several 

unsuccessful alternative approaches were tried. For completeness, these methods and 

their results are described here. We specifically explored two unsuccessful approaches to 

try to measure TM stiffness in mice. The first used whole tissue wedges, where the AFM 

tip approached the TM in an en face orientation. The second used sagittal cryosectioning 

of outflow tissues, similar to the approach described in the main body of the thesis, 

except that the TM was localized by using fluorescent tracers. This chapter based in part 

on the author’s PhD thesis proposal. 

C.1 Methods 

C.1.1 AFM Measurement using en face Wedges 

Mouse eyes were dissected using microscissors by making a circumferential cut in the 

posterior sclera centered on the optic nerve. The lens was expelled and the iris removed 

by traction. The anterior eye was divided into four quadrants, and the choroid and 

remaining vitreous were removed by gently scraping the sclera with forceps or a swab. 

One of the quadrants was attached to a Plus gold slide (Electron Microscopy Sciences, 

Hatfield, PA), oriented so that the inner (uveal) TM faced upwards (Figure C.1). No glue 

was needed since the sample was secured by the permanent positive charges on the slide 

surface. AFM measurements were performed at room temperature within 24 hours of 

enucleation. A series of forcemaps were obtained in regions located along a line starting 
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on the cornea and ending on the pigmented region, representing the sclera. The starting 

location for this line was determined visually, and thus it was impossible to ensure that 

the starting points were identical between samples. Each forcemap region consisted of 4 

× 4 force curves over a lateral scan size of 10 µm x 10 µm. The center-to-center distance 

between adjacent forecemap regions was 10 µm. Each force curve was taken at a rate of 8 

µm/s. The average modulus from the valid measurements points within a forcemap 

region was taken as the compressive modulus of that region. These moduli from all 

forcemap regions in one sample were then plotted as a function of region location along 

the measurement line (cornea to sclera). The anterior border of the TM was putatively 

defined as the anterior-most location that: (i) was adjacent to a modulus peak, and (ii) had 

a compressive modulus less than 10 kPa. Moving posteriorly, the first location which had 

modulus larger than 10 kPa was treated as the posterior border of the TM. 

 

Figure C.1: Schematic view of the sample preparation procedure for AFM on en 

face anterior wedges. 

To investigate whether the TM was well-preserved or damaged after preparation, since 

the TM could not be observed from the bottom camera on the AFM, we performed two 

types of post-measurement check: conventional histology, and scanning electron 

microscopy (SEM). For conventional histology, anterior wedges of the eye were 

immersion fixed in 4% paraformaldehyde and embedded in epoxy resin using standard 
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protocols. Semi-thin plastic sections were cut and stained with toluidine blue. For SEM, 

tissue was fixed in Universal Fixative, incubated in Ta/Gu-HCL solution, rinsed 

thoroughly in PBS and post fixed in 1% osmium tetroxide in PBS for 1 hour. Tissue was 

dehydrated in an ethanol series (25%-100%), incubated in Hexamethyldislazane for 20 

minutes, air dried in a fume hood and sputter coated with gold-palladium. The samples 

were then examined with a Hitachi SU8230 SEM. All SEM was done by Dr. A. Thomas 

Read in our lab and conventional histology was done by M.D. Guorong at Duke 

University. 

C.1.2 AFM Measurement using Cryosections 

Cryosectioning procedures were done in the same way as described in Chapter 3. To 

assist with TM localization, we perfused fluorescent microbead tracer into the eye to 

highlight the outflow pathway. Briefly, after facility measurement, eyes were perfused a 

second time with a solution containing fluorescent microbeads and cryoprotectant at 8 

mmHg for 45 minutes. For perfusate preparation, 20 µL of fluorescent microbead tracer 

(carboxylate-modified 20 nm microspheres, 2% mass concentration, Life Technologies, 

Carlsbad, CA) was diluted (1:400) in 15% glycerol. 45 minutes was found to be the 

optimal perfusion time for tracer to strongly penetrate the TM and SC [15]. During AFM 

measurement, fluorescent areas at the limbal region were first identified under the 

fluorescent microscope attached to the AFM. Single force measurements were then 

performed in those areas. 
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C.2 Results 

C.2.1 AFM Measurement of en face Wedges 

The compressive modulus profiles of the samples tested showed several broadly 

similar features (Figure C.2, C.3). Specifically, tissue was stiff in the cornea and 

softened gradually as the measurement location moved posteriorly. Most eyes then 

showed a local peak in stiffness between the corneal region and a region with softer 

modulus. However, towards the posterior end of the measurement zone, the modulus 

increased again and showed large variations. Based on the criteria listed above, a putative 

TM location was identified in each sample (red brackets; Figure C.3); however, the 

anterior-posterior extent of the TM varied significantly from eye to eye. The compressive 

modulus of C57BL/6J mouse TM, as identified, ranged from 1.23 to 5.42 kPa (mean, 

3.91 ± 1.73 kPa). In addition, the TM stiffness was positively correlated to the tissue 

freshness which was indicated by hours from enucleation to measurement (R2 = 0.78, 

p=0.019), indicating that tissue freshness needs to be consistent when measuring the 

stiffness. 
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Figure C.2: A representative view of sample (sample 4 in Figure C.3) and cantilever 

from the bottom camera on the AFM. Measurements started in the cornea on the 

right side (labeled), along the measurement line (red dashed line) and towards to the 

pigmented region. The measured compressive modulus of each location along the 

measurement line is indicated in blue dots. Error bar: standard deviation. 

 

Figure C.3: Compressive modulus values measured in mouse TM by AFM. 

Measurements were made from right to left (cornea to sclera) as described in the 

text. All curves have been aligned at the putative anterior border of TM (dashed 

line). The regions inside red brackets are considered as the TM region. 
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As observed, stiffness varied significantly as a function of measurement position, 

which was expected based on known mechanical properties of the relevant tissues in 

other species, e.g.  cornea is stiffer than TM in human eyes [167, 168]. We also observed 

stiffness peaks between stiff and soft regions. At the putative anterior edge of the TM, 

this peak may have been due to a transition zone between corneal endothelium and TM, 

known to exist in both human and bovine eyes [169]. Although the exact composition of 

this zone remained unknown, it was very likely the place where Descemet’s membrane 

terminates. Given the fact that Descemet’s membrane was stiffer than corneal 

endothelium in rabbits [170], we speculated that, in the mouse eye, there was a similar 

(stiffer) transition zone, which may account for the modulus peak at the putative anterior 

edge of the TM.  

The large variation in modulus for regions on the posterior side of the curves may be 

due to residual iris root, ciliary body and/or choroid in the preparation. A modulus 

threshold of 10 kPa was chosen to help identify the TM, since 10 kPa was the maximum 

elastic modulus of normal human TM. However, it must be noted that the data reported 

on human TM was obtained from the Schlemm’s canal side of TM, while in this study 

indentations were taken on the inner (uveal) side of the TM. Further, the anterior-

posterior extents of the TM measured in this study were highly variable, which was 

unexpected. This suggests that this method of defining the anterior and posterior 

boundaries of the TM was insufficient and must be improved. 

Histological images (Figure C.4) showed that TM integrity varied significantly from 

sample to sample. This may partially explain the significant variation in anterior-posterior 

extent of the TM in Figure C.3. 
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Figure C.4: Histological images of damaged (left) and intact (right) TM. Source: 

Guorong Li, M.D. 

SEM images (Figure C.5) revealed a transition band between the cornea and CB/Iris. 

However, the putative TM region was not seen to be porous, as the TM is expected to be, 

and appeared possibly more similar to tendons or muscles of the CB. Thus, it seemed 

possible that the TM may have been located underneath this transition region and was not 

exposed to the AFM cantilever during measurement. 

 

Figure C.5: Representative SEM image of one quadrant with inner (uveal) TM 

facing upward. Cornea and CB/iris are labeled. A glue dot was placed as a mark to 

indicate the starting point of the force curve measurements.  
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C.2.2 AFM Measurement on Cryosections 

Figure C.6 shows a representative cryosection (mouse strain: C57BL/6J) observed from 

the fluorescent microscope of the AFM. A high concentration of fluorescent tracer was 

present around SC and mostly distributed near the outer wall of SC, possibly due to tracer 

diffusion. AFM measurements were performed on several tissue locations where high 

concentration of microbeads were present (marked with numbers). 

 

Figure C.6: Anterior angle in a representative cryosection (mouse strain: C57BL/6J) 

under the fluorescent microscope after microbead perfusion. Fluorescent microbead 

tracer appears green. TM, Trabecular Meshwork; CB, Ciliary Body; SC, 

Schlemm’s canal. Small numbers are AFM measurement locations. 

C.3 Summary 

Overall, identification of the TM was very uncertain using the en face approach. Post-

measurement checks (histology) using this approach indicated that TM integrity was not 
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be guaranteed and that the TM might not even have been exposed to the cantilever during 

AFM measurements.  

In the microbead-based approach, despite a relatively concentrated fluorescent signal at the 

iridocorneal angle, little tracer appeared between the inner wall of SC and the CB, where 

the TM most likely was located. The deviation between the actual TM location and the 

region of tracer accumulation may have been caused by tracer diffusion during sample 

preparation and measurement. Further, the effect of microbeads themselves on measured 

TM stiffness was uncertain. Therefore, we decided to abandon these two methods and use 

the open SC lumen-based method on cryosections for subsequent TM stiffness 

measurements, as described in detail in Chapter 3. 
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